Ir al contenido

Documat


Dynamics Behaviours of Kink Solitons in Conformable Kolmogorov–Petrovskii–Piskunov Equation

  • Ikram Ullah [1] ; Kamal Shah [2] ; Thabet Abdeljawad [4] ; Mohammad Mahtab Alam [3] ; Ahmed S. Hendy [5] ; Shoaib Barak [6]
    1. [1] Central South University

      Central South University

      China

    2. [2] Prince Sultan University

      Prince Sultan University

      Arabia Saudí

    3. [3] King Khalid University

      King Khalid University

      Arabia Saudí

    4. [4] Prince Sultan University & China Medical University
    5. [5] Ural Federal University & Western Caspian University
    6. [6] Govt Degree College
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01119-4
  • Enlaces
  • Resumen
    • The current study introduces the generalised New Extended Direct AlgebraicMethod (gNEDAM) for producing and examining propagation of kink soliton solutions within the framework of the Conformable Kolmogorov–Petrovskii–Piskunov Equation (CKPPE), which entails conformable fractional derivatives into account. The primary justification around employing conformable derivatives in this study is their special ability to comply with the chain rule, allowing for in the solution of aimed nonlinear model. The CKPPE is a crucial model for a number of disciplines, such as mathematical biology, reaction-diffusion mechanisms, and population increase.

      CKPPE is transformed into a Nonlinear Ordinary Differential Equation by the proposed gNEDAM, and many kink soliton solutions are found by applying the series form solution. These kink soliton solutions shed light on propagation mechanisms within the framework of the CKPPE model. Furthermore, our research offers multiple graphical depictions that facilitate the examination and analysis of the propagation patterns of the identified kink soliton solutions. Through the integration of mathematical biology and reaction-diffusion principles, our research broadens our comprehension of intricate occurrences in various academic domains.

  • Referencias bibliográficas
    • 1. Ali, R., Zhang, Z., Ahmad, H.: Exploring soliton solutions in nonlinear spatiotemporal fractional quantum mechanics equations: an analytical...
    • 2. Miller, K.S., Ross, B.:An Introduction to the FractionalCalculus and FractionalDifferential Equations. Accademic Press, New York (1993)
    • 3. Elizarraraz, D., Verde-Star, L.: Fractional divided differences and the solution of differential equations of fractional order. Adv. Appl....
    • 4. He, J.H.: Fractal calculus and its geometrical explanation. Results Phys. 10, 272–276 (2018)
    • 5. Gaber, A., Ahmad, H.: Solitary wave solutions for space-time fractional coupled integrable dispersionless system via generalized kudryashov...
    • 6. Arqub, O.A.: Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method....
    • 7. Tian, Y., Liu, J.: A modified exp-function method for fractional partial differential equations. Therm. Sci. 25(2 Part B), 1237–1241 (2021)
    • 8. Bayrak, M.A., Demir, A.: A new approach for space-time fractional partial differential equations by residual power series method. Appl....
    • 9. Khan, H., Baleanu, D., Kumam, P., Al-Zaidy, J.F.: Families of travelling waves solutions for fractionalorder extended shallow water wave...
    • 10. Kaplan, M., Bekir, A., Akbulut, A., Aksoy, E.: The modified simple equation method for nonlinear fractional differential equations. Rom....
    • 11. Younis, M., Iftikhar, M.: Computational examples of a class of fractional order nonlinear evolution equations using modified extended...
    • 12. Yasmin, H., Aljahdaly, N.H., Saeed, A.M., Shah, R.: Investigating symmetric soliton solutions for the fractional coupled Konno-Onno system...
    • 13. Eslami, M., Fathi Vajargah, B., Mirzazadeh, M., Biswas, A.: Application of first integral method to fractional partial differential equations....
    • 14. Ma, W.X.: General Solution to a Nonlocal Linear Differential Equation of First-Order. Qual. Theory Dyn. Syst. 23(4), 177 (2024)
    • 15. Khater, M.M.: Computational simulations of propagation of a tsunami wave across the ocean. Chaos Solitons Fractals 174, 113806 (2023)
    • 16. Khater, M.M.: Advanced computational techniques for solving the modified KdV-KP equation and modeling nonlinear waves. Opt. Quant. Electron....
    • 17. Khater,M.M.:Waves inmotion: unraveling nonlinear behavior through the Gilson-Pickering equation. Eur. Phys. J. Plus 138(12), 1138 (2023)
    • 18. Khater,M.M.: Analyzing pulse behavior in optical fiber: novel solitary wave solutions of the perturbed Chen-Lee-Liu equation. Mod. Phys....
    • 19. Khater, M.M.: Exploring the rich solution landscape of the generalized Kawahara equation: insights from analytical techniques. Eur. Phys....
    • 20. Khater, M.M.: Wave propagation and evolution in a (1+ 1)-dimensional spatial-temporal domain: a comprehensive study. Mod. Phys. Lett....
    • 21. Khater, M.: Dynamics of nonlinear time fractional equations in shallow water waves. Int. J. Theor. Phys. 63(4), 1–12 (2024)
    • 22. Khater, M.M.: Computational method for obtaining solitary wave solutions of the (2+1)-dimensional AKNS equation and their physical...
    • 23. Chu, Y.M., Javeed, S., Baleanu, D., Riaz, S., Rezazadeh, H.: New exact solutions of Kolmogorov Petrovskii Piskunov equation, Fitzhugh...
    • 24. Gelens, L., Anderson, G.A., Ferrell, J.E.: Spatial trigger waves: positive feedback gets you a long way. Mol. Biol. Cell 25(22), 3486–3493...
    • 25. Mahgoub, M.M.A., Sedeeg, A.K.H.: On the solution of Newell-Whitehead-Segel equation. Am. J. Math. Comput. Model. 1(1), 21–24 (2016)
    • 26. Sarikaya, M.Z., Budak, H., Usta, H.: On generalized the conformable fractional calculus. TWMS J. Appl. Eng. Math. 9(4), 792–799 (2019)
    • 27. Alquran, M.: The amazing fractional Maclaurin series for solving different types of fractional mathematical problems that arise in physics...
    • 28. Alquran, M.A.R.W.A.N.: Investigating the revisited generalized stochastic potential-KdV equation: fractional time-derivative against proportional...
    • 29. Ali, M., Alquran, M., Jaradat, I.: Explicit and approximate solutions for the Conformable-Caputo time-fractional diffusive predator-prey...
    • 30. Kumar, S., Mohan, B.: Bilinearization and new center-controlled N-rogue solutions to a (3+1)- dimensional generalized KdV-type equation...
    • 31. Kumar, S., Mohan, B.: A novel analysis of Cole-Hopf transformations in different dimensions, solitons, and rogue waves for a (2+1)-dimensional...
    • 32. Mohan, B., Kumar, S., Kumar, R.: Higher-order rogue waves and dispersive solitons of a novel P-type (3+1)-D evolution equation in...
    • 33. Zhu, C., Al-Dossari, M., Rezapour, S., Shateyi, S.: On the exact soliton solutions and different wave structures to the modified Schrödinger’s...
    • 34. Zhu, C.,Al-Dossari,M., El-Gawaad, N.S.A., Alsallami, S.A.M., Shateyi, S.: Uncovering diverse soliton solutions in the modified Schrödinger’s...
    • 35. Zhu, C., Abdallah, S.A.O., Rezapour, S., Shateyi, S.: On new diverse variety analytical optical soliton solutions to the perturbed nonlinear...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno