Ir al contenido

Documat


The Integrability and Linearizability of Cubic -Equivariant Systems with Two 1: Resonant Saddle Points

  • Xiongkun Wang [1] ; Changjian Liu [1]
    1. [1] Sun Yat-sen University

      Sun Yat-sen University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01128-3
  • Enlaces
  • Resumen
    • In this article, the integrability and linearizability of a class of cubic Z2-equivariant systems ˙ x = −1 2 x − a21 y + 1 2 x3 + a21x2 y + a12xy2 + a03 y3, ˙y = (−q − b21)y + b21x2 y + b12xy2 + b03 y3, are studied. For any positive integer q, we obtain the first three saddle quantities of the above systems by theoretical analysis. Moreover, for any positive integer q, we derive the necessary and sufficient conditions for the linearizability of the above systems under some assumptions.

  • Referencias bibliográficas
    • 1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover, New York (1965)
    • 2. Amelkin, V.V., Lukashevich, N.A., Sadovskii, A.N.: Nonlinear Oscillations in the Second Order Systems. BGU Publication, Minsk (1982). (in...
    • 3. Algaba, A., Garcia, C.,Gine, J., Llibre, J.: The center problem for Z2-symmetric nilpotent vector fields. J. Math. Anal. Appl. 466(1),...
    • 4. Christopher, C.,Mardeˆsi´c, P., Rousseau, C.: Normalizable, integrable and linerizable saddle points for complex quadratic systems in C2....
    • 5. Chen, X., Gine, J., Romanovski, V.G., Shafer, D.S.: The 1:−q resonant center problem for certain cubic Lotka–Volterra systems. Appl. Math....
    • 6. Dukaric, M., Fercec, B., Gine, J.: The solution of the 1:−3 resonant center problem in the quadratic case. Appl. Math. Comput. 237, 501–511...
    • 7. Fercec, B., Gine, J., Mencinger, M., Oliveira, R.: The center problem for a 1:−4 resonant quadratic system. J. Math. Anal. Appl. 420(2),...
    • 8. Fronville, A., Sadovski, A.P., ˙ Zoła˛dek, H.: Solution of the 1 : −2 resonant center problem in the quadratic case. Fundam. Math. 157,...
    • 9. Garcia, A., Giacomini, H., Gine, J., Llibre, J.: Analytic nilpotent centers as limits of nondegenerate centers revisited. J. Math. Anal....
    • 10. Giacomini, H., Gine, J., Llibre, J.: The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic...
    • 11. Gine, J., Llibre, J., Valls, C.: Simultaneity of centres in Zq-equivariant systems. Proc. A. 474(2213), 20170811 (2018)
    • 12. Liu, C., Chen, G., Li, C.: Integrability and linearizability of the Lotka–Volterra systems. J. Differ. Equ. 198, 301–320 (2004)
    • 13. Li, F., Liu, Y.R., Tian, Y.Y., Yu, P.: Integrability and linearizability of cubic Z2 systems with nonresonant singular points. J. Differ....
    • 14. Li, F., Liu, Y.Y., Yu, P.,Wang, J.L.: Complex integrability and linearizability of cubic Z2 systems with two 1:q non-resonant singular...
    • 15. Li, J., Lin, Y.: Normal form and critical points of the period of closed orbits for planar autonomous systems. Acta Math. Sin. 34, 490–501...
    • 16. Li, J., Lin, Y.: Global bifurcations in a perturbed cubic system with Z2-symmetry. Acta Math. Appl. Sin. 8(2), 131–143 (1992)
    • 17. Li, J., Liu, Y.R.: New results on the study of Zq-equivariant planar polynomial vector fields. Qual. Theory Dyn. Syst. 9(1–2), 167–219...
    • 18. Li, J., Liu, Z.: Bifurcation set and limit cycles forming compound eyes in a perturbed Hamiltonian system. Publ. Math. 35, 487–506 (1991)
    • 19. Li, J., Liu, Z.:Bifurcation set and compound eyes in a perturbed cubicHamiltonian system, in: Ordinary and Delay Differential Equations....
    • 20. Li, J.,Wan, S.: Global bifurcations in a disturbed Hamiltonian vector field approaching a 3:1 resonant Poincaré map. Acta Math. Appl....
    • 21. Liu YR, Li J, Huang W.: Planar Dynamical Systems: Selected Classical Problems, Walter de Gruyter GmbH Co KG (2014)
    • 22. Ilyashenko, Y.S., Pyartli, A.S.: Materialization of resonances and divergence of normalizing series for polynomial differential equations....
    • 23. Xiao, P.: Critical point quantities and integrability conditions for complex resonant polynomial differential systems, Ph.D. Thesis, School...
    • 24. ˙ Zoła˛dek, H.: The problem of center for resonant singular points of polynomial vector fields. J. Differ. Equ. 137, 94–118 (1997)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno