Ir al contenido

Documat


Stochastic Persistence, Extinction and Stationary Distribution in HTLV-I Infection Model with CTL Immune Response

  • Sovan Bera [2] ; Subhas Khajanchi [1] ; Tapan Kumar Kar [2]
    1. [1] Presidency University

      Presidency University

      India

    2. [2] Indian Institute of Engineering Science and Technology Shibpur
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01120-x
  • Enlaces
  • Resumen
    • To study the impact of stochastic environmental variations on the transmission dynamics of HTLV-I infection, a stochastic HTLV-I infection model with a nonlinear CTL immune response is developed. By selecting an appropriate stochastic Lyapunov functional, we discussed the qualitative behavior of the stochastic HTLV-I infectionmodel, such as existence and uniqueness, stochastically ultimate bounded, and uniformly continuous. We find adequate criteria for the presence of a distinct ergodic stationary distribution of the HTLV-I system when the stochastic basic reproduction number is bigger than one by a careful mathematical examination of the HTLV-I infectionmodel.

      Furthermore, when the stochastic fundamental reproduction number (RE 0 ) is smaller than one, we provide sufficient circumstances for the extinction of the diseases. To illustrate our analytical conclusions, we ran numerical simulations. We also plotted the time series evolution of the CTL immune response, healthy CD4+T cells, latently infected CD4+T cells, and actively infected CD4+T cells in relation to the white noise.

      In the numerical simulation, we investigate that small intensities of a singlewhite noise can sustain a very slight fluctuation in each population. The high intensities of only one white noise can maintain the irregular recurrence of each population. Both the deterministic and stochastic models have the same solution if the random noises are too small.

  • Referencias bibliográficas
    • 1. Ma, Z., Zhou, Y., Wu, J.: Modeling and Dynamics of Infectious Diseases. Higher Education Press, Beijing (2009)
    • 2. Zhang, J., Jin, Z., Sun, G.-Q., Zhou, T., Ruan, S.: Analysis of rabies in Chaina: transmission dynamics and control. Plos One 6, e20891...
    • 3. Robbins, F.W.: A mathematical model for HIV infection: simulating T4, T8, macrophages, antibody, and virus vispecific anti-HIV response...
    • 4. Wang, K., Fan, A., et al.: Global properties of an improved hepatitis B virus model. Nonlinear Anal. RWA 11, 3131–3138 (2010)
    • 5. Das, D.K., Khajanchi, S., Kar, T.K.: The impact of the media awareness and optimal strategy on the prevalence of tuberculosis. Appl. Math....
    • 6. Dwivedi, A., Keval, R., Khajanchi, S.: Modeling optimal vaccination strategy for dengue epidemic model: a case study of India. Phys. Scr....
    • 7. Richardson, J.H., Edwards, A.J., Cruickshank, J.K., et al.: In vivo cellular tropism of human T-cell lekemia virus type I. J. Virol. 64,...
    • 8. Gallo, R.C.: History of the discoveries of the first human retroviruses: HTLV-I and HTLV-II. Oncogene 24, 5926–5930 (2005)
    • 9. Kubota, R., Osame,M., Jacobson, S.: Retroviruses: human T-cell lymphotropic virus type-I assiciated disease and immune dysfunction. In:...
    • 10. Bangham, C.R.: The immune response to HTLV-I. Curr. Opin. Immunol. 12, 397–402 (2000)
    • 11. Bangham, C.R.M., Osame, M.: Cellular immune response to HTLV-I. Oncogene 24(39), 6035–6046 (2005)
    • 12. Kubota, R., Hanada, K., Furukawa, Y., Arimura, K., Osame, M., Gojobon, T., Izumo, S.: Genetic stability of human T lympotropic virus type...
    • 13. Greten, T.F., Slansky, J.E., Kubota, R., Soldan, S.S., Jaffee, E.M., Liest, T.P., Paradoll, D.M., Jacobson, S., Schneck, J.P.: Direct...
    • 14. Mosley, A.J., Asquith, B., Bangham, C.R.M.: cell-mediated immune response to human Tlymphotropic virus type-I. Viral Immun. 18, 293–305...
    • 15. Jacobson, S.: Immunopathogenesis of HTLV-I associated neurological disease. J. Infect. Dis. 186, 187–192 (2002)
    • 16. Gomez-Acevedo, H., Li,M.Y.: Backward bifurcation in a model for HTLV-I infection of CD4+ T cells. Bull. Math. Biol. 67, 101–114 (2005)
    • 17. Cai, L., Li, X., Ghosh, M.: Global dynamics of a mathematical model for HTLV-I infection of CD4+ T cells. Appl. Math. Model. 35, 3587–3595...
    • 18. Nowak, M.A., Bangham, C.R.M.: Population dynamics of immune response to persistent virus. Science 272, 74–79 (1996)
    • 19. Gomez-Acevedo, H., Li, M.Y.: Global dynamics of a mathematical model for HTLV-I infection of T cells. Can. Appl. Math. Quatrly 10(1),...
    • 20. Gomez-Acevedo, H., Li, M.Y., Jcobson, S.: Multi-stability in a model for CTL response to HTLV-I infection and its consequence in HAM/TSP...
    • 21. Li, M.Y., Shu, H.: Multiple stable periodic solutions in a mathematical model of CTL response to HTLV-I infction. Bull. Math. Biol. 73,...
    • 22. Wang, Y., Liu, J.: Global stability for delay dependent HTLV-I model with CTL immune response. In: AIP Conferrence Proceeding, p. 480074...
    • 23. Bera, S., Khajanchi, S., Roy, T.K.: Stability analysis of fuzzy HTLV-I infection model: a dynamic approach. J. Appl. Math. Comput. 69,...
    • 24. Li, M.Y., Shu, H.: Global dynamics of a mathematical model for HTLV-I infection of CD4+ T cells with delayed CTL response. Nonlinear...
    • 25. Lu, X., Hui, L., Liu, S., et al.: A mathematical model of HTLV-I infection with two time delays. Math. Biosci. Eng. 12, 431–449 (2015)
    • 26. Li, F., Ma, W.: Dynamical analysis of an HTLV-I infection model with mitotic division of actively infected cells and delayed CTL immune...
    • 27. Wang, J., Wang, K., Jiang, Z.: Dynamical behaviors of an HTLV-I infection model with intracellular delay and immune activation delay....
    • 28. Wang, Y., Liu, J., Heffernan, M.: Viral dynamics of an HTLV-I model with intracellular delay and CTL immune respons delay. J. Math. Anal....
    • 29. Lim, A.G., Maini, P.K.: HTLV-I infection: a dynamic struggle between viral persistence and host immunity. J. Theor. Biol. 352, 92–108...
    • 30. Gomez-Acevedo, H., Li,M.Y.: Backward bifurcation in a model for HTLV-I infection of CD4+ T cells. Bull. Math. Biol. 67, 101–114 (2004)
    • 31. Bera, S., Khajanchi, S., Roy, T.K.: Dynamics of an HTLV-I infectionmodelwith delayed CTLs immune response. Appl. Math. Comput. 430, 127206...
    • 32. Das, D.K., Khajanchi, S., Kar, T.K.: Transmission dynamics of tuberculosis with multiple re-infections. Chaos Soliton Fractals 130, 109450...
    • 33. Das, D.K., Khajanchi, S., Kar, T.K.: Influence of multiple re-infections in tuberculosis transmission dynamics: a mathematical approach....
    • 34. Mondal, J.,Khajanchi, S., Samui, P.: Impact of media awareness in mitigating the spread of an infectious disease with application to optimal...
    • 35. Nandi, S., Khajanchi, S., Chatterjee, A.N., Roy, P.K.: Insight of viral infection of Jatropha Curcas plant (Future Fuel): a control based...
    • 36. Roberts, M., Andereasen, V., Liod, A., Pellis, L.: New challenges for deterministic epidemic models. Epidemic 10, 49–53 (2015)
    • 37. Shi, Z., Jiang, D.: Environmental variability in a stochastic HIV infection model. Commun. Nonlinear Sci. Numer. Simul. 120, 107201 (2023)
    • 38. Mao, X., Marion, G., Renshaw, E.: Environmental Browian noise suppresses explosions in population dynamics. Stoch. Process 97, 1774–1793...
    • 39. Chang, Z., Meng, X., Zhang, T.: A new way of investigating the asymptotic behavior of a stochastic SIS system with multiplicative noise....
    • 40. Tuckwell, H.C., Williams, R.J.: Some properties of a simple stochastic epidemic model of SIR type. Math. Biosci. 208, 76–97 (2007)
    • 41. Liu, Q., Jiang, D.: The threshold of a stochastic delayed SIR epidemic model with vaccination. Phys. A 461, 140–147 (2016)
    • 42. Yuan, Y., Allen, L.J.S.: Stochastic models for virus and immune system dynamics. Math. Biosci. 234(2), 84–94 (2011)
    • 43. Xu, Y., Allen, L.J.S., Perelson, A.S.: Stochstic model of an influenza epidemic with drug resistence. J. Theor. Biol. 248(1), 179–193...
    • 44. Qi, K., Jiang, D.: Threshold behavior in a stochastic HTLV-I infection model with CTL immune response and regime switching. Math. Methods...
    • 45. Daipeng, K., Qian, Y., Li, J.: Dynamics of stochastic HTLV-I infection model with nonlinear CTL immune response. Math. Methods Appl. Sci....
    • 46. Din, A.: The stochastic bifurcation analysis and stochastic delayed optimal control for epidemic model with general incidence function....
    • 47. Jabbari, A., Lotfi,M., Kheiri, H., Khajanchi, S.: Mathematical analysis of the dynamics of a fractionalorder tuberculosis epidemic in...
    • 48. Din, A., Li, Y., Yusaf, A.: Delayed hepatitis B epidemicmodel with stochastic analysis. Chaos Solitons Fractals 146, 110839 (2021)
    • 49. Din, A., Li, Y.: Mathematical analysis of a new nonlinear stochastic hepatitis B epidemic model with vaccination effect and a case study....
    • 50. Rihan, F.A., Alsakaji, H.J., Kundu, S., Mohamed, O.: Dynamics of a time-delay differential model for tumour-immune interactions with random...
    • 51. Khajanchi, S., Das, D.K., Kar,T.K.: Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation. Phys....
    • 52. Rihan, F.A.: Analysis of a stochastic HBV infection model with delayed immune response. Math. Biosci. Eng. 18(5), 5194–5220 (2021)
    • 53. Zafar, Z.U., DarAssi,M.H., Ahmad, I., Assiri, T.A., Meetei, M.Z., khanMA, Hassan AM,: Numerical simulation and analysis of the stochastic...
    • 54. Alshammari, F.S., Akyildiz, F.T., Khan, M.A., Din, A., Sunthrayuth, P.: A Stochastic mathematical model for understanding the COVID-19...
    • 55. Asquith, B., Bangham, C.R.M.: How does HTLV-I persist despite a strong cell-mediated immune response? Trends Immunol. 29, 4–11 (2008)
    • 56. Khajanchi, S., Bera, S., Roy, T.K.: Mathmatical analysis of the global dynamics of HTLV-I infection model, considering the role of cytotoxic...
    • 57. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer Science & Business Media, Cham (2013)
    • 58. Driessche, P.V.D., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compermental models of disease transmission....
    • 59. Mao, X.: Stochastic Differential Equations and Applications. Horwood Publishing, Chichester (1997)
    • 60. Dalal, N., Greenhalgh, D., Mao, X.: A stochastic model for internal HIV dynamics. J. Math. Anal. Appl. 341(2), 1084–1101 (2008)
    • 61. Edmunds,W.J., Medley, G.F., Nokes, D.J.: The transmission dynamics and control of hepatitis b virus in the Gambia. Stat. Med. 15(20),...
    • 62. Tiwari, P.K., Rai, R.K., Khajanchi, S., Gupta, R.K., Misra, A.K.: Dynamics of coronavirus pandemic: effects of community awareness and...
    • 63. Mao, X.: Stochastic Differential Equations and Applications. Woodhead Publishing, Oxford (2011)
    • 64. Has’minskii, R.Z.: Stochastic Stability of Differential Equations. Sijthoff Noordhoff Alphen aan den Rijn, The Netherlands (1980)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno