Ir al contenido

Documat


On the Cauchy Problem for Nonlinear Fractional Systems with Lipschitzian Matrices Under the Generalized Metric Spaces

  • Abdelatif Boutiara [1] ; Sotiris K. Ntouyas [2] ; Taghreed A. Assiri [3] ; Jessada Tariboon [5] ; Emad E. Mahmoud [4]
    1. [1] University of Ghardaia

      University of Ghardaia

      Argelia

    2. [2] University of Ioannina

      University of Ioannina

      Dimos Ioánnina, Grecia

    3. [3] Umm al-Qura University

      Umm al-Qura University

      Arabia Saudí

    4. [4] Taif University

      Taif University

      Arabia Saudí

    5. [5] King Mongkut’s University of Technology North Bangkok
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01127-4
  • Enlaces
  • Resumen
    • This research paper study the existence, uniqueness and Ulam–Hyers stability of the solutions of a certain system of thegeneralized Caputo fractional differential equations in the context of the generalized metric spaces. The existence and uniqueness theorems are proved by using the Krasnoselskii’s and Perov’s fixed point theorems under the Bielecki norm with a Lipschitzian matrix in the generalized metric spaces. Moreover, the Ulam–Hyers stability analysis is conducted based on the Urs’s criterion. An example, lastly, is proposed to check the efficiency of the above-mentioned theorems.

      The results are novel and provide extensions to some of the findings known in the literature.

  • Referencias bibliográficas
    • 1. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific Publishing Co., Inc, River Edge (2000)
    • 2. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press Inc, San Diego (1999)
    • 3. Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations. De Gruyter Series in Nonlinear...
    • 4. Izadi,M., Veeresha, P., Adel,W.: The fractional-order marriage-divorce mathematical model: numerical investigations and dynamical analysis....
    • 5. Izadi, M., Waezizadeh, T.: Stability analysis and numerical evaluations of a COVID-19 model with vaccination. BMC Med. Res. Methodol. 24(1),...
    • 6. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics...
    • 7. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific Publishing Co. Pte. Ltd., Hackensack (2014)
    • 8. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481...
    • 9. Atangana, A., Baleanu, D.: New fractional derivative without nonlocal and nonsingular kernel: theory and application to heat transfer model....
    • 10. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 73–85 (2015)
    • 11. Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 142 (2012)
    • 12. Al-Issa, S.M., Kaddoura, I.H., Rifai, N.J.: Existence and Hyers–Ulam stability of solutions to the implicit second-order differential...
    • 13. Santra, S.S., Arulselvam, M., Baleanu, D., Govindan, V., Khedher, Kh.M.: General solution and generalized Hyers–Ulam stability for additive...
    • 14. Ben, M.A., Mchiri, L., Rhaima, M., Sallay, J.: Hyers–Ulam stability of Hadamard fractional stochastic differential equations. Filomat...
    • 15. Rhaima, M., Mchiri, L., Ben Makhlouf, A., Ahmed, H.: Ulam type stability for mixed Hadamard and Riemann–Liouville fractional stochastic...
    • 16. Bin Chikh, S., Amara, A., Etemad, S., Rezapour, S.: On Hyers–Ulam stability of a multi-order boundary value problems via Riemann–Liouville...
    • 17. Boutiara, A., Abdo,M.S., Alqudah,M.A., Abdeljawad, T.: On a class of Langevin equations in the frame of Caputo function-dependent-kernel...
    • 18. Boutiara, A., Etemad, S., Alzabut, J., Hussain, A., Subramanian, M., Rezapour, S.: On a nonlinear sequential four-point fractional q-difference...
    • 19. Abbas, M.I., Ragusa, M.A.: On the hybrid fractional differential equations with fractional proportional derivatives of a function with...
    • 20. Suwan, I., Abdo,M.S., Abdeljawad, T.,Matar,M.M., Boutiara, A., Almalahi,M.A.: Existence theorems for -fractional hybrid systems with periodic...
    • 21. Bouazza, Z., Etemad, S., Souid, M.S., Rezapour, S., Martinez, F., Kaabar, M.K.A.: A study on the solutions of a multiterm FBVP of variable...
    • 22. Boutiara, A., Benbachir, M.: Existence and uniqueness results to a fractional q-difference coupled system with integral boundary conditions...
    • 23. Derbazi, C., Baitiche, Z., Benchohra, M., Graef, J.R.: Extremal solutions to a coupled system of nonlinear fractional differential equations...
    • 24. Etemad, S., Matar, M.M., Ragusa, M.A., Rezapour, S.: Tripled fixed points and existence study to a tripled impulsive fractional differential...
    • 25. Alzabut, J., Houas, M., Abbas, M.I.: Application of fractional quantum calculus on coupled hybrid differential systems within the sequential...
    • 26. Abbas, S., Benchohra, M., Samet, B., Zhou, Y.: Coupled implicit Caputo fractional q-difference systems. Adv. Differ. Equ. 2019, 527 (2019)
    • 27. Boutiara, A., Alzabut, J., Ghaderi, M., Rezapour, S.: On a coupled system of fractional (p, q)-differential equation with Lipschitzian...
    • 28. Boutiara, A., Etemad, S., Thabet, S.T.M., Ntouyas, S.K., Rezapour, S., Tariboon, J.: A mathematical theoretical study of a coupled fully...
    • 29. Boutiara, A., Matar, M.M., Alzabut, J., Samei, M.E., Khan, H.: On ABC coupled Langevin fractional differential equations constrained by...
    • 30. Derbazi, C., Baitiche, Z., Benchohra, M.: Coupled system of ψ-Caputo fractional differential equations without and with delay in generalized...
    • 31. Baitiche, Z., Derbazi, C., Benchohra, M., Zhou, Y.: A new class of coupled systems of nonlinear hyperbolic partial fractional differential...
    • 32. Zhang, Y., Wang, J.: Nonlocal Cauchy problems for a class of implicit impulsive fractional relaxation differential systems. J. Appl. Math....
    • 33. Urs, C.: Coupled fixed point theorems and applications to periodic boundary value problems. Miskolc Math. Notes 14(1), 323–333 (2013)
    • 34. Bolojan-Nica, O., Infante, G., Precup, R.: Existence results for systems with coupled nonlocal initial conditions. Nonlinear Anal. 94,...
    • 35. Li, X., Jiang, W., Xiang, J.: Existence and Hyers–Ulam stability results for nonlinear fractional systems with coupled nonlocal initial...
    • 36. Sousa, J.V.C., Oliveira, E.C.D.: Existence, uniqueness, estimation and continuous dependence of the solutions of a nonlinear integral...
    • 37. Sousa, J.V.C.: Existence results and continuity dependence of solutions for fractional equations. Differ. Equ. Appl. 12(4), 377–396 (2020)
    • 38. Cong, N.D., Tuan, H.T.: Existence, uniqueness, and exponential boundedness of global solutions to delay fractional differential equations....
    • 39. Baitiche, Z., Derbazi, C., Matar, M.M.: Ulam-stability results for a new form of nonlinear fractional Langevin differential equations...
    • 40. Petre, I.R., Petru¸sel, A.: Krasnoselskii’s theorem in generalized Banach spaces and applications. Electron. J. Qual. Theory Differ. Equ....
    • 41. Varga, R.S.: Matrix Iterative Analysis. Springer Series in Computational Mathematics, 27, Springer, Berlin (2000)
    • 42. Precup, R.: The role of matrices that are convergent to zero in the study of semilinear operator systems. Math. Comput. Model. 49, 703–708...
    • 43. Rus, I.A.: Generalized Contractions and Applications. Cluj University Press, Cluj (2001)
    • 44. Precup, R., Viorel, A.: Existence results for systems of nonlinear evolution equations. Int. J. Pure Appl. Math. 47(2), 199–206 (2008)
    • 45. Perov, A.I.: On the Cauchy problem for a system of ordinary differential equations. Pviblizhen. Met. Reshen. Differ. Uvavn. Vyp. 2, 115–134...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno