Ir al contenido

Documat


Attractors in k-Dimensional Discrete Systems of Mixed Monotonicity

  • Ziyad AlSharawi [3] ; Jose S. Cánovas [1] Árbol académico ; Sadok Kallel [2]
    1. [1] Universidad Politécnica de Cartagena

      Universidad Politécnica de Cartagena

      Cartagena, España

    2. [2] American University of Sharjah

      American University of Sharjah

      Emiratos Árabes Unidos

    3. [3] American University of Sharjah & Universidad Politécnica de Cartagena
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01123-8
  • Enlaces
  • Resumen
    • We consider k-dimensional discrete-time systems of the form in which the map F is continuous and monotonic in each one of its arguments. We define a partial order on , compatible with the monotonicity of F, and then use it to embed the k-dimensional system into a 2k-dimensional system that is monotonic with respect to this poset structure. An analogous construction is given for periodic systems. Using the characteristics of the higher-dimensional monotonic system, global stability results are obtained for the original system. Our results apply to a large class of difference equations that are pertinent in a variety of contexts. As an application of the developed theory, we provide two examples that cover a wide class of difference equations, and in a subsequent paper, we provide additional applications of general interest.

  • Referencias bibliográficas
    • 1. Gouzé, J.-L., Hadeler, K.P.: Monotone flows and order intervals. Nonlinear World 1(1), 23–34 (1994)
    • 2. Smith, H.L.: The discrete dynamics of monotonically decomposable maps. J. Math. Biol. 53(4), 747– 758 (2006)
    • 3. Smith, H.L.: Global stability for mixed monotone systems. J. Differ. Equ. Appl. 14(10–11), 1159–1164 (2008)
    • 4. AlSharawi, Z.: Embedding and global stability in periodic 2-dimensional maps of mixed monotonicity. Chaos, Solitons Fractals 157(10), 111933...
    • 5. AlSharawi, Z., Kallel, Z.: Global stability in the Ricker model with delay and stocking. Preprint
    • 6. Schröder, J.: Fehlerabschätzung bei linearen Gleichungssystemen mit dem Brouwerschen Fixpunktsatz. Arch. Ration. Mech. Anal. 3, 28–44 (1959)
    • 7. Collatz, L.: Funktionalanalysis und numerische Mathematik, volume Band 120 of Die Grundlehren der mathematischen Wissenschaften. Springer,...
    • 8. El-Morshedy, H.A., Ruiz-Herrera, A.: Asymptotic convergence in delay differential equations arising in epidemiology and physiology. SIAM...
    • 9. Kulenovi´c, M.R.S., Merino, O.: A global attractivity result for maps with invariant boxes. Discrete Contin. Dyn. Syst. Ser. B 6(1), 97–110...
    • 10. Krause, U., Pituk, M.: Boundedness and stability for higher order difference equations. J. Differ. Equ. Appl. 10(4), 343–356 (2004)
    • 11. Al-Salman, A., AlSharawi, Z., Kallel, S.: Extension, embedding and global stability in two dimensional monotone maps. Discrete Contin....
    • 12. Kulenovi´c, M.R.S., Merino, O.: A global attractivity result for maps with invariant boxes. Discrete Contin. Dyn. Syst. Ser. B 6(1), 97–110...
    • 13. Ricker, W.E.: Stock and recruitment. J. Fish. Res. Board Can. 11(5), 559–623 (1954)
    • 14. Jury, E.I.: On the roots of a real polynomial inside the unit circle and a stability criterion for linear discrete systems. IFAC Proc....
    • 15. Luís, R.: Linear stability conditions for a first order n-dimensional mapping. Qual. Theory Dyn. Syst. 20(1), 20 (2021)
    • 16. Camouzis, E., Ladas, G.: Dynamics of Third-order Rational Difference Equations with Open Problems and Conjectures. Advances in Discrete...
    • 17. Koci´c, V.L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Mathematics and its Applications,...
    • 18. Kulenovi´c, M.R.S., Ladas, G.: Dynamics of Second Order Rational Difference Equations. Chapman & Hall/CRC, Boca Raton, FL (2002)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno