Ir al contenido

Documat


Some Existence Results of Coupled Hilfer Fractional Differential System and Differential Inclusion on the Circular Graph

  • Lihong Zhang [1] ; Xuehui Liu [2]
    1. [1] Shanxi Normal University & Western Caspian University
    2. [2] Shanxi Normal University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01117-6
  • Enlaces
  • Resumen
    • Circular network structure is widely used in neural network, image processing, computer vision and bioinformatics. For example, recurrent neural network is a kind of neural network with a circular structure that can be used to process temporal data. It has a wide range of applications in natural language processing, speech recognition, music generation, etc. In this paper, in order to reduce the complexity of the presentation, we study a class of Hilfer-type fractional differential system and differential inclusion with coupled integral boundary value conditions on the simplest circular graph. First, two existence results of Hilfer-type fractional differential system are proved by some known fixed point theorems. Further, the existence results of convex and non-convex multivalued mappings are obtained by using Leray–Schauder nonlinear alternative and Covitz–Nadler fixed point theorem, respectively. At last, two examples are given to verify our theoretical results.

  • Referencias bibliográficas
    • Baleanu, D., Aydogn, S.M., Mohammadi, H., et al.: On modelling of epidemic childhood diseases with the Caputo–Fabrizio derivative by using...
    • 2. Khan, H., Alam, K., Gulzar, H., et al.: A case study of fractal-fractional tuberculosis model in China: existence and stability theories...
    • 3. Baleanu, D., Jajarmi, A., Mohammadi, H., et al.: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional...
    • 4. Tuan, N.H., Mohammadi, H., Rezapour, S.: A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Chaos...
    • 5. Sun, H., Zhang, Y., Baleanu, D., et al.: A new collection of real world applications of fractional calculus in science and engineering....
    • 6. Kulish, V.V., Lage, J.L.: Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124, 803–806 (2002)
    • 7. Diethelm, K., Ford, N.J., Freed, A.D., et al.: Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods...
    • 8. Cafagna, D.: Fractional calculus: a mathematical tool from the past for present engineers [Past and present]. IEEE Ind. Electron. Mag....
    • 9. Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Phys. A 284, 376–384 (2000)
    • 10. Chatterjee, A.N., Ahmad, B.: A fractional-order differential equation model of COVID-19 infection of epithelial cells. Chaos Solitons...
    • 11. Sun, H., Chen, W., Li, C., et al.: Fractional differential models for anomalous diffusion. Phys. A 389, 2719–2724 (2010)
    • 12. Zhang, X., Liu, L., Wu, Y.: Variational structure and multiple solutions for a fractional advectiondispersion equation. Comput. Math....
    • 13. Guo, S., Mei, L., Li, Y., et al.: The improved fractional sub-equation method and its applications to the space-time fractional differential...
    • 14. Prasad, V., Mehta, U.: Modeling and parametric identification of Hammerstein systems with time delay and asymmetric dead-zones using fractional...
    • 15. Owolabi, K.M., Atangana, A., Akgul, A.:Modelling and analysis of fractal-fractional partial differential equations: application to reaction-diffusion...
    • 16. Ma, Y., Li, W.: Application and research of fractional differential equations in dynamic analysis of supply chain financial chaotic system....
    • 17. Sun, H.G., Chen,W.,Wei, H., et al.: A comparative study of constant-order and variable-order fractional models in characterizing memory...
    • 18. Hussain, S., Madi, E.N., Khan, H., et al.: On the stochastic modeling of COVID-19 under the environmental white noise. J. Funct. Space....
    • 19. Ahmad, M., Zada, A., Ghaderi, M., et al.: On the existence and stability of a neutral stochastic fractional differential system. Fractal...
    • 20. Khan, H., Alzabut, J., Shah, A., et al.: On fractal-fractional waterborne disease model: a study on theoretical and numerical aspects...
    • 21. Aydogan, S.M., Baleanu, D., Mohammadi, H., et al.: On the mathematical model of Rabies by using the fractional Caputo–Fabrizio derivative....
    • 22. Hussain, S., Madi, E.N., Khan, H., et al.: Investigation of the stochastic modeling of COVID-19 with environmental noise from the analytical...
    • 23. Zhang, L., Liu, X., Wang, G.: Study of (k, )-Hilfer fractional differential and inclusion systems on the glucose graph. Heliyon 10, e31285...
    • 24. Wang, G., Pei, K., Chen, Y.: Stability analysis of nonlinear Hadamard fractional differential system. J. Frankl. Inst. 356, 6538–6546...
    • 25. Zhang, X., Liu, L., Wiwatanapataphee, B., Wu, Y.: The eigenvalue for a class of singular p-Laplacian fractional differential equations...
    • 26. Sun, J., Zhao, Y.: Multiplicity of positive solutions of a class of nonlinear fractional differential equations. Comput. Math. Appl. 49,...
    • 27. Wang, G., Qin, J., Zhang, L., Baleanu, D.: Explicit iteration to a nonlinear fractional Langevin equation with non-separated integro-differential...
    • 28. Chang, Y., Zhao, J.: Some new asymptotic properties on solutions to fractional evolution equations in Banach spaces. Appl. Anal. 102,...
    • 29. Zhang, L., Ahmad, B., Wang, G., et al.: Radial symmetry of solution for fractional p-Laplacian system. Nonlinear Anal. 196, 111801 (2020)
    • 30. Wang, G., Ren, X., Bai, Z., et al.: Radial symmetry of standing waves for nonlinear fractional Hardy– Schrödinger equation. Appl. Math....
    • 31. Nagajothi, N., Sadhasivam, V., Bazighifan, O., et al.: Existence of the class of nonlinear hybrid fractional Langevin quantum differential...
    • 32. Zhang, L., Hou, W.: Standing waves of nonlinear fractional p-Laplacian Schrödinger equation involving logarithmic nonlinearity. Appl....
    • 33. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
    • 34. Abbas, S., Benchohra, M., Lazreg, J.E., et al.: A survey on Hadamard and Hilfer fractional differential equations: analysis and stability....
    • 35. Ahmed, H.M., El-Borai, M.M., El-Owaidy, H.M., et al.: Impulsive Hilfer fractional differential equations. Adv. Differ. Equ. 2018, 1–20...
    • 36. Kucche, K.D., Mali, A.D., Fernandez, A., et al.: On tempered Hilfer fractional derivatives with respect to functions and the associated...
    • 37. Baleanu, D., Etemad, S., Mohammadi, H., et al.: A novel modeling of boundary value problems on the glucose graph. Commun. Nonlinear Sci....
    • 38. Rezapour, S., Deressa, C.T., Hussain, A., et al.: A theoretical analysis of a fractional multi-dimensional system of boundary value problems...
    • 39. Mehandiratta, V., Mehra, M., Leugering, G.: Existence and uniqueness results for a nonlinear Caputo fractional boundary value problem...
    • 40. Etemad, S., Rezapour, S.: On the existence of solutions for fractional boundary value problems on the ethane graph. Adv. Differ. Equ....
    • 41. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)
    • 42. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017)
    • 43. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29, 2352–2449...
    • 44. Karatzas, E., Gkonta, M., Hotova, J., et al.: VICTOR: a visual analytics web application for comparing cluster sets. Comput. Biol. Med....
    • 45. Wongcharoen, A., Ntouyas, S.K., Tariboon, J.: Nonlocal boundary value problems for Hilfer-type pantograph fractional differential equations...
    • 46. Hilfer, R., Luchko, Y., Tomovski, Z.: Operational method for the solution of fractional differential equations with generalized Riemann–Liouville...
    • 47. Smart, D.R.: Fixed Point Theorems. Cambridge University Press, Cambridge (1980)
    • 48. Deimling, K.: Nonlinear Functional Analysis, Springer: New York (1985)
    • 49. Lasota, A., Opial, Z.: An application of Kakutani–Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci....
    • 50. Ntouyas, S.K., Ahmad, B., Tariboon, J.: (k,ψ)-Hilfer nonlocal integro-multi-point boundary value problems for fractional differential...
    • 51. Granas, A., Dugundji, J.: Fixed Point Theory. Springer: New York (2005)
    • 52. Covitz, H., Nadler, S.B.: Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8, 5–11 (1970)
    • 53. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580. Springer, Berlin (1977)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno