Ir al contenido

Documat


Simultaneous Hopf and Bogdanov–Takens Bifurcations on a Leslie–Gower Type Model with Generalist Predator and Group Defence

  • Liliana Puchuri [1] ; Orestes Bueno [2] ; Eduardo González-Olivares [3] ; Alejandro Rojas-Palma [4]
    1. [1] Pontificia Universidad Católica del Perú

      Pontificia Universidad Católica del Perú

      Perú

    2. [2] University of the Pacific

      University of the Pacific

      Estados Unidos

    3. [3] Pontificia Universidad Católica de Valparaíso

      Pontificia Universidad Católica de Valparaíso

      Valparaíso, Chile

    4. [4] Universidad Católica del Maule

      Universidad Católica del Maule

      Provincia de Talca, Chile

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01118-5
  • Enlaces
  • Resumen
    • In this work, we analyze a two-dimensional continuous-time differential equations system derived from a Leslie–Gower predator–prey model with a generalist predator and prey group defence. For our model, we fully characterize the existence and quantity of equilibrium points in terms of the parameters, and we use this to provide necessary and sufficient conditions for the existence and the explicit form of two kinds of equilibrium points: both a degenerate one with associated nilpotent Jacobian matrix, and a weak focus. These conditions allows us to determine whether the system undergoes Bogdanov–Takens and Hopf bifurcations. Consequently, we establish the existence of a simultaneous Bogdanov–Taken and Hopf bifurcation. With this double bifurcation, we guarantee the existence of a new Hopf bifurcation curve and two limit cycles on the system: an infinitesimal and another non-infinitesimal.

  • Referencias bibliográficas
    • 1. Wolkowicz, G.S.K.: Bifurcation analysis of a predator–prey system involving group defence. SIAM J. Appl. Math. 48(3), 592–606 (1988). https://doi.org/10.1137/0148033
    • 2. Xiao, D., Ruan, S.: Global analysis in a predator–prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61(4), 1445–1472...
    • 3. Zhu, H., Campbell, S.A., Wolkowicz, G.S.K.: Bifurcation analysis of a predator–prey system with nonmonotonic functional response. SIAM...
    • 4. Freedman, H., Wolkowicz, G.: Predator–prey systems with group defence: the paradox of enrichment revisited. Bull. Math. Biol. 48(5–6),...
    • 5. González-Yañez, B., González-Olivares, E., Mena-Lorca, J.: Multistability on a Leslie–Gower type predator–prey model with nonmonotonic...
    • 6. Li, Y., Xiao, D.: Bifurcations of a predator–prey system of Holling and Leslie types. Chaos Solitons Fractals 34(2), 606–620 (2007). https://doi.org/10.1016/j.chaos.2006.03.068
    • 7. Taylor, R.J.: Predation. Population and Community Biology. Chapman and Hall, New York (1984)
    • 8. May, R.M.: Stability and Complexity in Model Ecosystems, 1st Princeton Landmarks in Biology. Princeton University Press, Princeton (2001)
    • 9. Turchin, P.: Complex Population Dynamics: A Theoretical/Empirical Synthesis. Monographs in Population Biology, vol. 35. Princeton University...
    • 10. Arancibia-Ibarra, C., González-Olivares, E.: The Holling–Tanner model considering an alternative food for predator. In: Vigo-Aguiar, J....
    • 11. González-Olivares, E., Arancibia-Ibarra, C., Rojas-Palma, A., González-Yañez, B.: Dynamics of a modified Leslie–Gower predation model...
    • 12. Valenzuela, L.M., Falconi, M., Blé, G.: A generalist predator and the planar zero-Hopf bifurcation. Int. J. Bifurc. Chaos 27(03), 1750034...
    • 13. Leslie, P.H.: Some further notes on the use of matrices in population mathematics. Biometrika 35(3/4), 213–245 (1948). https://doi.org/10.2307/2332342
    • 14. Leslie, P.H., Gower, J.C.: The properties of a stochastic model for the predator–prey type of interaction between two species. Biometrika...
    • 15. González-Olivares, E., Arancibia-Ibarra, C., Rojas-Palma, A., González-Yañez, B.: Bifurcations and multistability on the May–Holling–Tanner...
    • 16. Aguirre, P., González-Olivares, E., Sáez, E.: Three limit cycles in a Leslie–Gower predator–prey model with additive Allee effect. SIAM...
    • 17. Aguirre, P., González-Olivares, E., Sáez, E.: Two limit cycles in a Leslie–Gower predator–prey model with additive Allee effect. Nonlinear...
    • 18. Dai, Y., Zhao, Y.: Hopf cyclicity and global dynamics for a predator–prey system of Leslie type with simplified Holling type IV functional...
    • 19. Huang, J., Xia, X., Zhang, X., Ruan, S.: Bifurcation of codimension 3 in a predator–prey system of Leslie type with simplified Holling...
    • 20. Puchuri, L., González-Olivares, E., Rojas-Palma, A.: Multistability in a Leslie–Gower-type predation model with a rational nonmonotonic...
    • 21. Arancibia-Ibarra, C., Flores, J.: Dynamics of a Leslie–Gower predator–prey model with Holling type II functional response, Allee effect...
    • 22. Talibi Alaoui, H., Yafia, R.: Stability and Hopf bifurcation in an approachable haematopoietic stem cells model. Math. Biosci. 206(2),...
    • 23. Kayan, ¸S, Merdan, H., Yafia, R., Goktepe, S.: Bifurcation analysis of a modified tumor-immune system interaction model involving time...
    • 24. Yafia, R.: Hopf bifurcation in a delayed model for tumor-immune system competition with negative immune response. Discrete Dyn. Nat. Soc....
    • 25. Yafia, R., Aziz-Alaoui, M.A., Merdan, H., Tewa, J.J.: Bifurcation and stability in a delayed predator– prey model with mixed functional...
    • 26. Getz, W.M.: A hypothesis regarding the abruptness of density dependence and the growth rate of populations. Ecology 77(7), 2014–2026 (1996)....
    • 27. Sokol, W., Howell, J.A.: Kinetics of phenol oxidation by washed cells. Biotechnol. Bioeng. 23(9), 2039–2049 (1981). https://doi.org/10.1002/bit.260230909
    • 28. Perko, L.: Differential Equations and Dynamical Systems. Texts in Applied Mathematics, vol. 7, 2nd edn. Springer, New York (1996)
    • 29. Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maier, A.G.: Theory of Bifurcations of Dynamic Systems on a Plane. The Israel Program...
    • 30. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, vol. 112. Springer, New York (2004). https://doi.org/10.1007/978-1-4757-3978-7
    • 31. Rojas-Palma, A., González-Olivares, E.: Gause type predator–prey models with a generalized rational non-monotonic functional response....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno