Ir al contenido

Documat


Observer Design and State-Feedback Stabilization for Nonlinear Systems via Equilibrium Manifold Expansion Linearization

  • Tianjian Hou [1] ; Jun Zhou [1]
    1. [1] Hohai University

      Hohai University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01115-8
  • Enlaces
  • Resumen
    • Linearization remodeling and state-feedback control for a class of autonomous nonlinear systems based on equilibrium manifold expansion (EME) are visited and explicated in this paper, including linearization approximation, state-feedback stabilization and state estimation. More precisely, firstly, EME linearized remodels of nonlinear systems are explained and their existence is validated rigorously; secondly, EME-based state-feedback control and observer design are developed analytically with EME remodeling and gain scheduling; thirdly, stabilization under EME-based state feedback and observers are tackled, respectively; finally, feasibility and efficiency of the EME approach are illustrated by numerical simulations.

  • Referencias bibliográficas
    • 1. Rugh, W.J., Shamma, J.S.: Research on gain scheduling. Automatica 32(10), 1401–1425 (2000)
    • 2. Coutinho, P.H.S., Palhares, M.: Codesign of dynamic event-triggered gain-scheduling control for a class of nonlinear systems. IEEE Trans....
    • 3. Shi, K.H., Petersen, I.R., Vladimirov, I.G.: Making nonlinear systems negative imaginary via state feedback. Automatica 155, 111127 (2023)
    • 4. Baumann, W.T., Rugh, W.J.: Feedback control of nonlinear systems by extended linearization. IEEE Trans. Autom. Control 31(1), 40–46 (1986)
    • 5. Baumann, W.T., Rugh, W.J.: Feedback control of analytic nonlinear systems by extended linearization. SIAM J. Control. Optim. 25(5), 1341–1352...
    • 6. Baumann, W.T.: Feedback control of multiinput nonlinear systems by extended linearization. IEEE Trans. Autom. Control 33(2), 193–197 (1988)
    • 7. Yu, D.R., Sui, Y.F.: Expansion model based on equilibrium manifold for nonlinear systems. J. Syst. Simul. 18(9), 2415–2418 (2006)
    • 8. Chen, C., Zhao, J.: Switching control of acceleration and safety protection for turbo fan aero-engines based on equilibrium manifold expansion...
    • 9. Zhu, L.H., Liu, J.F., Ma, Y.J., Zhou, W.X., Yu, D.R.: A corrected equilibrium manifold expansion model for gas turbine system simulation...
    • 10. Rotondo, D., Ponsart, J., Theilliol, D.: Gain-scheduled observer-based consensus for linear parameter varying multi-agent systems. Automatica...
    • 11. Arezki, H., Zemouche, A., Bedouhene, F., Alessandri, A., Laleg-Kirati, M.T.: State observer design method for a class of nonlinear systems....
    • 12. Venkateswaran, S., Kravaris, C.: Design of linear unknown input observers for sensor fault estimation in nonlinear systems. Automatica...
    • 13. Khalil, H. (ed.): Nonlinear Systems. Pearson Education International Inc, New Jersey (2000)
    • 14. Chen, W.H. (ed.): An Introduction to Differentiable Manifold. Advanced Education Press Inc, Beijing (1998)
    • 15. Rong, P.X., Lu, N., Lu, H.L.: Certificated method of the unity of bass-Gura, Ackerman and controllable standard form formulas. J. Harbin...
    • 16. Mathematical Sciences, E.C.N.U. (ed.): Mathematical Analysis. Advanced Education Press Inc, Beijing (2018)
    • 17. Chen, C. (ed.): Linear System Theory and Design. Oxford University Press, New York (1999)
    • 18. Oleinik, O.A. (ed.): Lecure of Partial Differential Equations. Advanced Education Press Inc, Beijing (2008)
    • 19. Sadamatsu, T.: On the Cauchy–Kowalewski theorem for general system of differential equations. J. Math. Kyoto Univ. 24(4), 593–609 (1984)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno