Ir al contenido

Documat


Traveling Wave Solutions for a Continuous and Discrete Diffusive Modified Leslie–Gower Predator–Prey Model

  • Zixuan Tian [1] ; Liang Zhang [1]
    1. [1] Lanzhou University

      Lanzhou University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01116-7
  • Enlaces
  • Resumen
    • In this work, the traveling wave solutions for a modified Leslie-Gower predator–prey model under continuous and discrete diffusion cases are investigated respectively. First, the existence of weak traveling wave solutions is shown by Schauder’s fixed point theorem with the help of positive upper and lower solutions, which can remove the singularity of the system with at . Then we use two methods, a squeeze method and a Lyapunov function method, to prove that, under additional conditions, the weak traveling wave solutions are actually traveling wave solutions. Finally, by showing the nonexistence of traveling wave solutions, the minimal wave speed is obtained.

  • Referencias bibliográficas
    • 1. Ai, S.B., Du, Y.H., Peng, R.: Traveling waves for a generalized Holling-Tanner predator-prey model. J. Differ. Equ. 263(11), 7782–7814...
    • 2. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. Partial Differ. Equ....
    • 3. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44(1), 331–340...
    • 4. Bentout, S., Djilali, S., Atangana, A.: Bifurcation analysis of an age-structured prey-predator model with infection developed in prey....
    • 5. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equations.Wiley Ser.Math. Comput. Biol. John Wiley & Sons Ltd, Chichester...
    • 6. Chen, X.F., Guo, J.-S.: Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics. Math. Ann. 326(1), 123–146...
    • 7. Chen, Y.S., Guo, J.-S., Shimojo, M.: Recent developments on a singular predator-prey model. Discrete Contin. Dyn. Syst. Ser. B. 26(4),...
    • 8. Chen, Y.Y., Guo, J.-S., Hamel, F.: Traveling waves for a lattice dynamical system arising in a diffusive endemic model. Nonlinearity 30(6),...
    • 9. Chen, Y.Y., Guo, J.-S., Yao, C.-H.: Traveling wave solutions for a continuous and discrete diffusive predator-prey model. J. Math. Anal....
    • 10. Collings, J.B.: The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model. J. Math....
    • 11. DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for tropic interaction. Ecology 56(4), 881– 892 (1975)
    • 12. Djilali, S., Cattani, C.: Patterns of a superdiffusive consumer-resource model with hunting cooperation functional response. Chaos Solit....
    • 13. Ducrot, A., Guo, J.-S.: Quenching behaviour for a singular predator-prey model. Nonlinearity 25(7), 2059–2073 (2012)
    • 14. Ducrot, A., Langlais, M.: A singular reaction-diffusion system modelling prey-predator interactions: Invasion and co-extinction waves....
    • 15. Dunbar, S.R.: Travelling wave solutions of diffusive Lotka-Volterra equations. J. Math. Biol. 17, 11–32 (1983)
    • 16. Dunbar, S.R.: Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in R4. Trans. Amer. Math. Soc....
    • 17. Fife, P.C.: Mathematical Aspects of Reacting and Diffusing Systems. Springer-Verlag, Berlin-New York. 28: iv+185 pp (1979)
    • 18. Gaucel, S., Langlais, M.: Some remarks on a singular reaction-diffusion system arising in predator-prey modeling. Discrete Contin. Dyn....
    • 19. Guo, Z.-S., Wu, C.H.: Traveling wave front for a two-component lattice dynamical system arising in competition models. J. Differ. Equ....
    • 20. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc....
    • 21. Huang, J.H., Lu, G., Ruan, S.G.: Existence of traveling wave solutions in a diffusive predator-prey model. J. Math. Biol. 46, 132–152...
    • 22. Huang, W.Z.: Traveling wave solutions for a class of predator-prey systems. J. Dynam. Differ. Equ. 24, 633–644 (2012)
    • 23. Huang, W.Z.: A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems. J. Differ....
    • 24. Lam, K.-Y., Lou, Y.: Introduction to Reaction-Diffusion Equations. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer,...
    • 25. Leslie, P.H.: Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–245 (1948)
    • 26. Li, H.L., Zhao, M., Yuan, R.: Traveling waves of modified Leslie-Gower predator-prey systems. arXiv preprint arXiv:2306.00701. (2023)
    • 27. Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm. Pure Appl. Math....
    • 28. Lin, G.: Invasion traveling wave solutions of a predator-prey system. Nonlinear Anal. 96, 47–58 (2014)
    • 29. Liu, X.X.,Weng, P.X.: Asymptotic speed of wave propagation for a discrete reaction-diffusion equation. Acta Math. Appl. Sin. Engl. Ser....
    • 30. Ma, S.: Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem. J. Differ. Equ. 171(2), 294–314 (2001)
    • 31. Ma, S.W., Zou, X.F.: Propagation and its failure in a lattice delayed differential equation with global interaction. J. Differ. Equ. 212(1),...
    • 32. Mezouaghi, A., Djilali, S., Bentout, S., Biroud, K.: Bifurcation analysis of a diffusive predator-prey model with prey social behavior...
    • 33. Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992)
    • 34. Shi, H.B., Li, W.T., Lin, G.: Positive steady states of a diffusive predator-prey system with modified Holling-Tanner functional response....
    • 35. Smoller, J.: Shock Waves and Reaction-Diffusion Equations, 2nd edn. Springer-Verlag, New York (1994)
    • 36. Souna, F., Djilali, S., Lakmeche, A.: Spatiotemporal behavior in a predator-prey model with herd behavior and cross-diffusion and fear...
    • 37. Su, T., Zhang, G.B.: Invasion traveling waves for a discrete diffusion ratio-dependent predator-prey model. Acta Mathematica Scientia...
    • 38. Volterra, V.: Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Societá anonima tipografica “Leonardo da...
    • 39. Wang, C.-H., Fu, S.-C.: Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete Contin. Dyn. Syst. Ser. B....
    • 40. Wang, M.X.: Nonlinear Second Order Parabolic Equations. CRC Press (2021)
    • 41. Yang, W.S.: Global asymptotical stability and persistent property for a diffusive predator-prey system with modified Leslie-Gower functional...
    • 42. Ye, Q., Li, Z., Wang, M., Wu, Y.: Introduction to Reaction-Diffusion Equations. Science Press, Beijing (2011)
    • 43. Zhang, T.R.: Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations. J. Differ. Equ. 262(9),...
    • 44. Zhang, T.R.,Wang,W.,Wang, K.: Minimal wave speed for a class of non-cooperative diffusion-reaction system. J. Differ. Equ. 260(3), 2763–2791...
    • 45. Zhang, R., Wang, J.L., Liu, S.Q.: Traveling wave solutions for a class of discrete diffusive SIR epidemic model. J. Nonlinear Sci. 31(1),...
    • 46. Zhao, X.K., Wang, H.R.: Traveling waves for a generalized Beddington-DeAngelis predator-prey model. Commun. Nonlinear Sci. Numer. Simul....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno