Ir al contenido

Documat


The edge ideals of {{\textbf{t}}}-spread d-partite hypergraphs

  • Musapaşaoğlu, Asli [1] ; Asloob Qureshi, Ayesha [1] ; Nasernejad, Mehrdad [2]
    1. [1] Sabanci University, Faculty of Engineering and Natural Sciences, Orta Mahalle, Tuzla, 34956, Istanbul, Turkey
    2. [2] Univ. Artois, UR 2462, Laboratoire de Mathématique de Lens (LML), 62300, Lens, France
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 75, Fasc. 3, 2024, págs. 735-751
  • Idioma: inglés
  • DOI: 10.1007/s13348-023-00410-y
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Inspired by the definition of {{\textbf{t}}}-spread monomial ideals, in this paper, we introduce {{\textbf{t}}}-spread d-partite hypergraph {\text {K}}^{{{\textbf{t}}}}_{{\text {V}}} and study its edge ideal I({\text {K}}^{{{\textbf{t}}}}_{{\text {V}}}). We prove that I({\text {K}}^{{{\textbf{t}}}}_{{\text {V}}}) has linear quotients, all powers of I({\text {K}}^{{{\textbf{t}}}}_{{\text {V}}}) have linear resolution and the Rees algebra of I({\text {K}}^{{{\textbf{t}}}}_{{\text {V}}}) is a normal Cohen-Macaulay domain. It is also shown that I (Kv) is normally torsion-free and a complete characterization of Cohen-Macaulay S/I({\text {K}}^{{{\textbf{t}}}}_{{\text {V}}}) is given.

  • Referencias bibliográficas
    • Berge, C.: Hypergraphs: combinatorics of finite sets, Mathematical Library 45, North-Holland, (1989)
    • Brodmann, M.: The asymptotic nature of the analytic spread. Math. Proc. Camb. Philos. Soc. 86, 35–39 (1979)
    • Dinu, R., Herzog, J., Qureshi, A.A.: Restricted classes of Veronese type ideals and algebras. Internat. J. Algebra Comput. 31, 173–197 (2021)
    • Eisenbud, D., Huneke, C.: Cohen-Macaulay Rees algebras and their specialization. J. Algebra 81, 202–224 (1983)
    • Ene, V., Herzog, J.: Gröbner Bases in Commutative Algebra, Graduate Studies in Mathematics, vol. 130. American Mathematical Society, Providence,...
    • Ene, V., Herzog, J., Qureshi, A.A.: t-spread strongly stable monomial ideals. Comm. Algebra 47(12), 5303–5316 (2019)
    • Ficarra, A.: Vector-spread monomial ideals and Eliahou-Kervaire type resolutions. J. Algebra 615, 170–204 (2023)
    • Fröberg, R.: Koszul Algebras, in Advances in Commutative Ring Theory: Proc. Fez Conf. 1997, ed. Dekker, Lecture Notes in Pure and Applied...
    • Grayson, D. R., Stillman, M. E.: Macaulay 2, a software system for research in algebraic geometry, available at www.math.uiuc.edu/Macaulay2/
    • Hà, H.T., Morey, S.: Embedded associated primes of powers of square-free monomial ideals. J. Pure Appl. Algebra 214, 301–308 (2010)
    • Herzog, J., Hibi, T.: Monomial Ideals, Graduate Texts in Mathematics, vol. 260. Springer-Verlag, Berlin (2011)
    • Herzog, J., Hibi, T.: The depth of powers of an ideal. J. Algebra 291, 534–550 (2005)
    • Herzog, J., Hibi, T., Vlădoiu, M.: Ideals of fiber type and polymatroids. Osaka J. Math. 42, 807–829 (2005)
    • Herzog, J., Takayama, Y.: Resolutions by mapping cones. Homol. Homotopy Appl. 4(2), 277–294 (2002)
    • Herzog, J., Qureshi, A.A.: Persistence and stability properties of powers of ideals. J. Pure Appl. Algebra 219, 530–542 (2015)
    • Hochster, M.: Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes. Ann. Math. 96, 228–235 (1972)
    • Sayedsadeghi, M., Nasernejad, M.: Normally torsion-freeness of monomial ideals under monomial operators. Comm. Algebra 46(12), 5447–5459 (2018)
    • Sayedsadeghi, M., Nasernejad, M., Qureshi, A.A.: On the embedded associated primes of monomial ideals. Rocky Mountain J. Math. 52(1), 275–287...
    • Sturmfels, B.: Gröbner Bases and Convex Polytopes. American Mathematical Society, Providence, RI (1995)
    • Villarreal, R.H.: Monomial Algebras. Monographs and Research Notes in Mathematics, 2nd edn. CRC Press, Boca Raton, FL (2015)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno