Ir al contenido

Documat


Estimación del rendimiento medio en las pruebas PISA 2018: Un enfoque espacial desde la metodología en estimación en áreas pequeñas

  • Cupertino Jimenez Coley [1] ; Cristian Fernando Tellez Pinerez [1]
    1. [1] Universidad Santo Tomás

      Universidad Santo Tomás

      Santiago, Chile

  • Localización: BEIO, Boletín de Estadística e Investigación Operativa, ISSN 1889-3805, Vol. 40, Nº. 2, 2024, págs. 7-17
  • Idioma: español
  • Enlaces
  • Resumen
    • Estimating students’ abilities in PISA tests is done using plausible values obtained through a three-parameter logistic model. With this methodology, only the information captured in the tests is taken into account, and estimates can only be made for countries and economies belonging to the OECD (domains) that were sampled. To improve the precision of the estimates and be able to make estimates in unsampled domains that have available and reliable auxiliary information, Tellez (2020) proposed using the small area estimation methodology through a Fay-Herriot model. This methodology incorporates external auxiliary information captured in addition to the test and allows for more precise estimates.

      In this research, the methodology proposed by Tellez (2020) is extended by including spatial variability in the small area estimation technique. This is achieved by using the spatial Fay-Herriot model, which takes into account the spatial autocorrelation among domains. This approach is specifically applied to the reading and mathematics tests of PISA 2018.

      The auxiliary information used in the spatial Fay-Herriot model includes variables associated with education, science, technology, sociodemographic characteristics, economy, infrastructure, and development. These auxiliary variables provide additional information to improve the precision of the estimates of students’ abilities in the domains.

  • Referencias bibliográficas
    • Attorresi, H. F., Lozzia, G. S., Abal, F. J. P., Galibert, M. S., and Aguerri, M. E. (2009). Teor´ıa de respuesta al ´ıtem. conceptos basicos...
    • Birnbaum, A. (1958). On the estimation of mental ability. Series Rep, 15:7755–7723.
    • Chandra, H. and Salvati, N. (2018). Small area estimation of proportions under a spatial dependent aggregated level random effects model....
    • Embretson, S. E. and Reise, S. P. (2013). Item response theory. Psychology Press.
    • Gutierrez, H. A. (2016). ´ Estrategias de muestreo: diseno de encuestas y estimaci ˜ on de par ´ ametros ´ . Ediciones de la U.
    • Harville, D. A. and Jeske, D. R. (1992). Mean squared error of estimation or prediction under a general linear model. Journal of the American...
    • Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. Journal of the American...
    • ICFES (2022). Informe nacional de resultados saber 3°, 5°, 7° y 9°.
    • Jimenez Coley, C. (2023). Estimaci ´ on del rendimiento medio en las pruebas pisa 2018. un enfoque espacial desde la estimaci ´ on en ´ areas...
    • Longford, N. T. (2005). On selection and composition in small area and mapping problems. Statistical methods in medical research, 14(1):3–16.
    • Mislevy, R. J. (1991). Randomization-based inference about latent variables from complex samples. Psychometrika, 56(2):177–196.
    • Mislevy, R. J., Beaton, A. E., Kaplan, B., and Sheehan, K. M. (1992). Estimating population characteristics from sparse matrix samples of...
    • Molina, I. (2019). Desagregacion de datos en encuestas de hogares: metodolog ´ ´ıas de estimacion en ´ areas peque ´ nas ˜ . Division de ´ Estad´ısticas...
    • OECD (2016). Pisa 2018. draft analytical frameworks, may 2016.
    • Petrucci, A. and Salvati, N. (2006). Small area estimation for spatial correlation in watershed erosion assessment. Journal of agricultural,...
    • Pfeffermann, D. (2002). Small area estimation-new developments and directions. International Statistical Review, 70(1):125–143.
    • Prasad, N. N. and Rao, J. (1990). The estimation of the mean squared error of small-area estimators. Journal of the American statistical association,...
    • Pratesi, M. and Salvati, N. (2008). Small area estimation: the eblup estimator based on spatially correlated random area effects. Statistical...
    • Rao, J. (2003). Small Area Estimation. Wiley, New York.
    • Rao, J. and Molina, I. (2015). Small area estimation. John Wiley & Sons.
    • Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. John Wiley & Sons.
    • Tellez, C. F. (2020). Estimacion de ´ areas peque ´ nas utilizando imputaci ˜ on m ´ ultiple en modelos log ´ ´ısticos de tres parametros...
    • Tellez, C. F., Arias, I. R., Gomez, S. G., and Oyola, L. T. (2021). Estimation of educational establishments performance in saber 5 ´ ◦ tests...
    • Trivino, A. F. P., Pi ˜ nerez, C. F. T., and Oyola, L. T. (2020). Estimaci ˜ on de los resultados en matem ´ aticas y ciencias de las pruebas...
    • Von Davier, M., Gonzalez, E., and Mislevy, R. (2009). What are plausible values and why are they useful. IERI monograph series, 2(1):9–36.
    • Wawrowski, Ł. (2016). The spatial fay-herriot model in poverty estimation. Folia Oeconomica Stetinensia, 16(2):191–202.
    • Zimmerman, D. L. and Cressie, N. (1992). Mean squared prediction error in the spatial linear model with estimated covariance parameters. Annals...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno