Ir al contenido

Documat


Existence Results for Nonlinear Hilfer Pantograph Fractional Integrodifferential Equations

  • B. Radhakrishnan [3] ; T. Sathya [3] ; M. A. Alqudah [1] ; W. Shatanawi [2] ; T. Abdeljawad [4]
    1. [1] Princess Nourah bint Abdulrahman University

      Princess Nourah bint Abdulrahman University

      Arabia Saudí

    2. [2] Prince Sultan University

      Prince Sultan University

      Arabia Saudí

    3. [3] PSG College of Technology
    4. [4] Safako Makgatho Health Science University, Kyung Hee University, Prince Sultan University, China Medical University,
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01069-x
  • Enlaces
  • Resumen
    • The main aim of this paper is to study the existence and uniqueness solutions for the nonlinear Hilfer pantograph fractional differential equations. This paper initiates with the persistence of the nonlinear Hilfer pantograph fractional differential equation. Also, it extended to the fractional integrodifferential equation. The premises are attained by using the fixed-point theorem. Ultimately, numerical examples are furnished to demonstrate our outcomes.

  • Referencias bibliográficas
    • Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993) Google Scholar
    • Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V, Amsterdam...
    • Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam (1987) Google...
    • Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, New York (2011) Google...
    • Diethelm, K.: The Analysis of Fractional Differential equations. Lecture Notes. Math, Springer, New York (2010) Book Google Scholar
    • Machado, J.T., Kiryakova, V., Mainardi, F.: Recent History of Fractional Calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 140–1153 (2011) Article...
    • Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014) Book Google Scholar
    • Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999) Google Scholar
    • Baleanu, D., Shiri, B.: Generalized fractional differential equations for past dynamic. AIMS Math. 7, 14394–14418 (2022) Article MathSciNet...
    • Gu, C.Y., Wu, G.C., Shiri, B.: An inverse problem approach to determine possible memory length of fractional differential equations. Frac....
    • Shiri, B., Wu, G.C., Baleanu, D.: Terminal value problems for the nonlinear systems of fractional differential equations. Appl. Numer. Math....
    • Baleanu, D., Shiri, B.: Nonlinear higher order fractional terminal value problems. AIMS Math. 7, 7489–7506 (2022) Article MathSciNet Google...
    • Yang, G., Shiri, B., Kong, H., Wu, G.C.: Intermediate value problems for fractional differential equations. Comput. Appl. Math. 40, 1–20 (2021) Article...
    • Shiri, B., Baleanu, D.: A general fractional pollution model for lakes. Commun. Appl. Math. Comput. 4, 1105–1130 (2022) Article MathSciNet...
    • Radhakrishnan, B., Sathya, T.: Controllability and periodicity results for neutral impulsive evolution system in Banach spaces. Dynam. Cont....
    • Radhakrishnan, B., Sathya, T.: A study on controllability and periodicity solutions for nonlinear neutral integrodifferential system. Konuralp...
    • Radhakrishnan, B., Sathya, T.: Controllability of nonlinear Hilfer fractional Langevin dynamical system. Num. Methods Partial Diff. Equ. 39,...
    • Radhakrishnan, B., Sathya, T.: Controllability of Hilfer Fractional Langevin Dynamical System with Impulse in an Abstract Weighted Space....
    • Hilfer, R.: Applications of fractional calculus in physics. World Scientific, Singapore (1999) Google Scholar
    • Kou, C., Liu, J., Ye, Y.: Existence and uniqueness solutions for the Cauchy-type problems of fractional differential equation. Discret. Dyn....
    • Furati, K.M., Kassim, M.D., Tatar, N.E.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl....
    • Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257, 344–354...
    • Yang, M., Wang, Q.: Existence of mild solutions for a class of Hilfer fractional evolution equations with non-local conditions. Fract. Calc....
    • Kavitha, K., Vijayakumar, V., Udhayakumar, R., Ravichandran, C.: Results on controllability of Hilfer fractional differential equations with...
    • Kavitha, K., Vijayakumar, V., Udhayakumar, R., Sakthivel, N., Nisar, Kottakkaran Sooppy: A note on approximate controllability of the Hilfer...
    • Kamocki, R.: A new representation formula for the Hilfer fractional derivative and its application. J. Comput. Appl. Math. 14, 1–14 (2016) MathSciNet...
    • Thabet, S.T.M., Ahma, B., Agarwal, R.P.: On abstract Hilfer fractional integrodifferential equations with boundary conditions. Arab J. Math....
    • Abbas, S., Benchohra, M., Lazreg, J.E., Zhou, Y.: A survey on Hadamard and Hilfer fractional differential equations: analysis stability. Chaos,...
    • Wang, J.R., Zhang, Y.: Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 266,...
    • Ockendon, J.R., Taylor, A.B.: The dynamics of a current collection system for an electric locomotive. Proc. Royal Soc. London Ser. A 322,...
    • Iserles, A.: On pantograph integrodifferential Equations. J. Int. Equ. Appl. 6, 213–237 (1994) MathSciNet Google Scholar
    • Patade, J., Bhalekar, J.: Analytical solution of pantograph equation with incommensurate delay. Phys. Sci. Rev. 2, 1–17 (2017) Google Scholar...
    • Yuzbas, S., Sezer, M.: An exponential approximation for solutions of generalized pantograph-delay differential equations. Appl. Math. Modeling...
    • Balachandran, K., Kiruthika, S.: Existence of solutions of nonlinear fractional pantograph equations. Acta Mathematica Scientia 33, 712–720...
    • Hashemi, M.S., Atangana, A., Hajikhah, S.: Solving fractional pantograph delay equations by an effective computational method. Math. Comput....
    • Ahmad, I., Nieto, J.J., Rahman, G.U., Kamalshah: Existence and stability for fractional order pantograph equation with non local conditions....
    • Almalahi, M.A., Panchal, S.K., Jarad, F.: Results on implicit fractional pantograph equations with Mittag-Leffler Kernel and non-local condition....
    • Bohr, H.: Zur theorie der fastperiodischen funktionen. Acta Math. 45, 29–127 (1925) Article MathSciNet Google Scholar
    • Zaidman, S.: Almost-periodic Functions in Abstract Spaces, Research Notes in Mathematics, vol. 126. Pitman Publishing, London (1985) Google...
    • He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999) Article MathSciNet Google Scholar
    • Pratibhamoy, D., Subrata, R., Higinio, R.: Homotopy perturbation method for solving Caputo-type fractional order Volterra-Fredholm integrodifferential...
    • Soleymani, K.V., Sedighi, H.K.: On the numerical solution of generalized pantograph equation. World Appl. Sci. J. 13, 2531–2535 (2011) Google...
    • Guerekata, G.M.: Almost automorphic functions and almost periodic functions in abstract spaces. Springer Science and Business Media, New York,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno