Ir al contenido

Documat


Dynamics and Wong-Zakai Approximations of Stochastic Nonlocal PDEs with Long Time Memory

  • Jiaohui Xu [1] ; Tomás Caraballo [3] Árbol académico ; José Valero [2] Árbol académico
    1. [1] Northwest University

      Northwest University

      China

    2. [2] Universidad Miguel Hernández de Elche

      Universidad Miguel Hernández de Elche

      Elche, España

    3. [3] Wenzhou University & Universidad de Sevilla
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01080-2
  • Enlaces
  • Resumen
    • In this paper, a combination of Galerkin’s method and Dafermos’ transformation is first used to prove the existence and uniqueness of solutions for a class of stochastic nonlocal PDEs with long time memory driven by additive noise. Next, the existence of tempered random attractors for such equations is established in an appropriate space for the analysis of problems with delay and memory. Eventually, the convergence of solutions of Wong-Zakai approximations and upper semicontinuity of random attractors of the approximate random system, as the step sizes of approximations approach zero, are analyzed in a detailed way.

  • Referencias bibliográficas
    • Bensoussan, A., Da Prato, G., Delfour, M. C., Mitter, S. K.: Representation and Control of Infinite-Dimensional Systems, Vol. 1. Systems &...
    • Brzeźniak, Z., Capiński, M., Flandoli, F.: A convergence result for stochastic partial differential equations. Stochastics 24, 423–445 (1988) Article...
    • Caraballo, T., Real, J.: Attractors for 2D-Navier-Stokes models with delays. J. Differ. Equ. 205, 271–297 (2004) Article MathSciNet Google...
    • Caraballo, T., Real, J., Chueshov, I.D.: Pullback attractors for stochastic equations in materials with memory. Discret. Contin. Dyn. Syst....
    • Caraballo, T., Garrido-Atienza, M.J., Schmalfuß, B., Valero, J.: Global attractor for a non-autonomous integro-differential equation in materials...
    • Caraballo, T., Garrido-Atienza, M.J., Schmalfuß, B., Valero, J.: Attractors for a random evolution equation with infinite memory: theoretical...
    • Chen, P.Y., Wang, R.H., Zhang, X.P.: Long-time dynamics of fractional nonclassical diffusion equations with nonlinear colored noise and delay...
    • Chen, Z., Li, L.Y., Yang, D.D.: Asymptotic behavior of random coupled Ginzburg-Landau equation driven by colored noise on unbounded domains....
    • Chueshov, I.D., Scheutzow, M.: Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations. J. Dynam....
    • Conti, M., Pata, V., Squassina, M.: Singular limit of differential systems with memory. Indiana Univ. Math. J. 1, 169–215 (2006) Article MathSciNet...
    • Cui, J., Liu, S., Zhou, H.: Stochastic wasserstein hamiltonian flows. J. Dyn. Differ. Equ. (2023). https://doi.org/10.1007/s10884-023-10264-4 Article...
    • Cui, J., Liu, S., Zhou, H.: Wasserstein hamiltonian flow with common noise on graph. SIAM J. Appl. Math. 83, 484–509 (2023) Article MathSciNet...
    • Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Academi-Verlag, Berlin (1974) Google...
    • Gatii, S., Grasselli, M., Pata, V.: Exponential attractors for a phased-filed model with memory and quadratic nonlinearities. Indiana Univ....
    • Giorgi, C., Pata, V., Marzocchi, A.: Asymptotic behavior of a semilinear problem in heat conduction with memory. Nonlinear Differ. Equ. Appl....
    • Grasselli, M., Pata, V.: Uniform attractors of nonautonomous dynamical systems with memory. Evolution Equations, Semigroups and Functional...
    • Gu, A.H., Wang, B.X.: Asymptotic behavior of random Fitzhugh-Nagumo sysmtes driven by colored noise. Discret. Contin. Dyn. Syst. Ser. B 23,...
    • Gu, A.H., Lu, K.N., Wang, B.X.: Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations. Discret. Contin....
    • Gu, A.H., Guo, B.L., Wang, B.X.: Long term behavior of random Navier-Stokes equations driven by colored noise. Discret. Contin. Dyn. Syst....
    • Li, D.S., Wang, X.H., Zhao, J.Y.L.: Limiting dynamical behavior of random fractional Fitzhugh-Nagumo systems driven by a Wong-Zakai approximation...
    • Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Gauthier-Villar, Paris (1969) Google Scholar
    • Lu, K.N., Wang, B.X.: Wong-Zakai approximations and long term behavior of stochastic partial differential equations. J. Dynam. Differ. Equ....
    • Nowak, A.: A Wong-Zakai type theorem for stochastic systems of Burgers equations. Panam. Math. J. 16, 1–25 (2006) MathSciNet Google Scholar
    • Pata, V., Zucchi, A.: Attractors for a damped hyperbolic equation with linear memory. Adv. Math. Sci. Appl. 11, 505–529 (2001) MathSciNet...
    • Robinson, J.: Infinite Dimensional Dynamical Systems. Cambridge University Press, Cambridge (2001) Book Google Scholar
    • Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam (1979) Google Scholar
    • Tessitore, G., Zabczyk, J.: Wong-Zakai approximations of stochastic evolution equations. J. Evol. Equ. 6, 621–655 (2006) Article MathSciNet...
    • Twardowska, K.: An approximation theorem of Wong-Zakai type for nonlinear stochastic partial differential equations. Stoch. Anal. Appl. 13,...
    • Wang, B.X.: Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems. J. Differ. Equ....
    • Wang, B.X.: Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms. Stoch. Dyn....
    • Wang, Y.J., Wang, J.Y.: Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations...
    • Wang, R.H., Li, Y.R., Wang, B.X.: Random dynamics of fractional nonclassical diffusion equations driven by colored noise. Discret. Contin....
    • Wong, E., Zakai, M.: On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Statist. 36, 1560–1564 (1965) Article MathSciNet...
    • Xu, J.H., Zhang, Z., Caraballo, T.: Non-autonomous nonlocal partial differential equations with delay and memory. J. Differ. Equ. 270, 505–546...
    • Xu, J.H., Caraballo, T.: Dynamics of stochastic nonlocal partial differential equations. Eur. Phys. J. Plus 136, 849 (2021) Article Google...
    • Xu, J.H., Caraballo, T.: Long time behavior of stochastic nonlocal partial differential equations and Wong-Zakai approximations. SIAM J. Math....
    • Xu, J.H., Caraballo, T., Valero, J.: Asymptotic behavior of a semilinear problem in heat conduction with long time memory and non-local diffusion....
    • Xu, J.H., Caraballo, T., Valero, J.: Asymptotic behavior of nonlocal partial differential equations with long time memory. Discrete Contin....
    • Yang, L., Wang, Y.J.: Attractors for 2D quasi-geostrophic equations with and without colored noise in . Stoch. Dyn. 21, 2150017 (2021)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno