Ir al contenido

Documat


Riemann-Hilbert approach for the complex Sharma-Tasso-Olver equation with high-order poles

  • Mengdie Liu [1] ; Biao Li [1]
    1. [1] Ningbo University

      Ningbo University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01053-5
  • Enlaces
  • Resumen
    • The inverse scattering transform is considered for the complex Sharma-Tasso-Olver equation with zero boundary condition by Riemann-Hilbert method. Under the reflection-less situation, we investigate the Riemann-Hilbert problem with one high-order pole and multiple high-order poles, respectively. By Laurent expansion of the Riemann-Hilbert problem and elimination of the integral factor involved in the solution, the explicit N-soliton solutions of the equation are derived. The interactions of several various solitons are displayed and their dynamics are analyzed.

  • Referencias bibliográficas
    • Verheest, F., Hereman, W.: Nonlinear mode decoupling for classes of evolution equations. J. Phys. A: Math. Gen. 15(1), 95 (1982) Article MathSciNet...
    • Tasso, H.: Hamiltonian formulation of odd Burgers hierarchy. J. Phys. A: Math. Gen. 29(23), 7779 (1996) Article MathSciNet Google Scholar
    • Wazwaz, A.M.: New solitons and kinks solutions to the Sharma-Tasso-Olver equation. Appl. Math. Comput. 188(2), 1205–1213 (2007) MathSciNet...
    • Yan, Z.Y.: Integrability of two types of the (2+1)-dimensional generalized Sharma-Tasso-Olver integro-differential equations. Math. Mech....
    • Lian, Z.J., Lou, S.Y.: Symmetries and exact solutions of the Sharma-Tass-Olver equation. Nonlinear Anal. 63, 1167–1177 (2005) Article MathSciNet...
    • Wang, S., Tang, X.Y., Lou, S.Y.: Soliton fission and fusion: Burgers equation and Sharma-Tasso-Olver equation. Chaos, Solitons Fractals 21(1),...
    • Ma, W.X., Chen, M.: Do symmetry constraints yield exact solutions? Chaos, Solitons Fractals 32(4), 1513–1517 (2007) Article MathSciNet Google...
    • Uǧurlu, Y., Kaya, D.: Analytic method for solitary solutions of some partial differential equations. Phys. Lett. A 370(3–4), 251–259 (2007) Article...
    • Inan, I.E., Kaya, D.: Exact solutions of some nonlinear partial differential equations. Phys. A 381, 104–115 (2007) Article MathSciNet Google...
    • Verheest, F., Hereman, W.: Nonlinear mode decoupling for classes of evolution equations. J. Phys. A: Math. Gen. 15(1), 95 (1982) Article MathSciNet...
    • Shang, Y.D., Yong, H., Yuan, W.J.: Bäcklund transformations and abundant exact explicit solutions of the Sharma-Tasso-Olver equation. Appl....
    • Wang, Y., Li, B., An, H.L.: Dark Sharma-Tasso-Olver Equations and Their Recursion Operators. Chinese Phys. Lett. 35, 010201 (2018) Article...
    • Yang, Z.Y.: Travelling wave solutions to nonlinear evolution and wave equations. J. Phys. A: Math. Gen. 27(8), 2837 (1994) Article MathSciNet...
    • Gudkov, V.V.: A family of exact travelling wave solutions to nonlinear evolution and wave equations. J. Math. Phys. 38(9), 4794–4803 (1997) Article...
    • Shang, Y., Qin, J., Huang, Y.: Abundant exact and explicit solitary wave and periodic wave solutions to the Sharma-Tasso-Olver equation. Appl....
    • Fan, E.G.: A family of completely integrable multi-Hamiltonian systems explicitly related to some celebrated equations. J. Math. Phys. 42(9),...
    • Hon, Y.C., Fan, E.G.: Uniformly constructing finite-band solutions for a family of derivative nonlinear Schrödinger equations. Chaos, Solitons...
    • Yue, C., Xia, T.C.: Algebro-geometric solutions for the complex Sharma-Tasso-Olver hierarchy. J. Math. Phys. 55, 083511 (2014) Article MathSciNet...
    • Zhang, N., Xia, T.C., Hu, B.B.: A Riemann-Hilbert approach to complex Sharma-Tasso-Olver equation on half line. Commun. Theor. Phys. 68(5),...
    • Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19(19), 1095...
    • Zakharov, V.E.E., Shabat, A.B.: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering...
    • Biondini, G., Kovačič, G.: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions....
    • Zhang, Y., Tao, X., Xu, S.: The bound-state soliton solutions of the complex modified KdV equation. Inverse Probl. 36, 065003 (2020) Article...
    • Guo, B., Ling, L.: Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation. J. Math. Phys. 53, 073506 (2012) Article...
    • Prinari, B., Ablowitz, M.J., Biondini, G.: Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary...
    • Zhang, X.F., Tian, S.F., Yang, J.J.: The Riemann-Hilbert approach for the focusing Hirota equation with single and double poles. Anal. Math....
    • Peng, W.Q., Chen, Y.: Double and triple pole solutions for the Gerdjikov?CIvanov type of derivative nonlinear Schrödinger equation with zero/nonzero...
    • Shabat, A., Zakharov, V.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov....
    • Tai, K., Hasegawa, A., Bekki, N.: Fission of optical solitons induced by stimulated Raman effect. Opt. Lett. 13(5), 392–394 (1988) Article...
    • Wadati, M., Ohkuma, K.: Multiple-pole solutions of the modified Korteweg-de Vries equation. J. Phys. Soc. Jpn. 51(6), 2029–2035 (1982) Article...
    • Tsuru, H., Wadati, M.: The multiple pole solutions of the sine-Gordon equation. J. Phys. Soc. Jpn. 53(9), 2908–2921 (1984) Article MathSciNet...
    • Zhang, Y.S., Rao, J.G., Cheng, Y., He, J.S.: Riemann-Hilbert method for the Wadati-Konno-Ichikawa equation: N simple poles and one higher-order...
    • Zhang, Y.S., Tao, X.X., Xu, S.W.: The bound-state soliton solutions of the complex modified KdV equation. Inverse Probl. 36, 065003 (2020) Article...
    • Zhang, Z.C., Fan, E.G.: Inverse scattering transform and multiple high-order pole solutions for the Gerdjikov-Ivanov equation under the zero/nonzero...
    • Ma, X.X.: Riemann-Hilbert approach for a higher-order Chen-Lee-Liu equation with high-order poles. Commun. Nonlinear Sci. 114, 106606 (2022) Article...
    • Peng, W.Q., Chen, Y.: Bound-state soliton and rogue wave solutions for the sixth-order nonlinear Schrödinger equation via inverse scattering...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno