Ir al contenido

Documat


Reducibility of the Linear Quantum Harmonic Oscillators Under Quasi-periodic Reversible Perturbation

  • Zhaowei Lou [1] ; Yingnan Sun [1] ; Youchao Wu [1]
    1. [1] Nanjing University of Aeronautics and Astronautics

      Nanjing University of Aeronautics and Astronautics

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01067-z
  • Enlaces
  • Resumen
    • In this paper, we establish the reducibility of a class of linear coupled quantum harmonic oscillator systems under time quasi-periodic, non-Hamiltonian, reversible perturbations. This essentially means that for most values of the frequency vector, these systems can be reduced to autonomous reversible systems with constant coefficients with respect to time. Our proof relies on an application of Kolmogorov–Arnold–Moser (KAM) theory for infinite dimensional reversible systems.

  • Referencias bibliográficas
    • Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Ann. 359(1–2), 471–536...
    • Bambusi, D.: Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations II. Comm. Math. Phys. 353(1), 353–378...
    • Bambusi, D.: Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations I. Trans. Amer. Math. Soc. 370(3), 1823–1865...
    • Bambusi, D., Graffi, S.: Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods. Comm. Math. Phys. 219, 465–480...
    • Bambusi, D., Grébert, B., Maspero, A., Robert, D.: Reducibility of the quantum harmonic oscillator in -dimensions with polynomial time-dependent...
    • Bambusi, D., Langella, B., Montalto, R.: Reducibility of non-resonant transport equation on with unbounded perturbations. Ann. Henri Poincaré...
    • Bambusi, D., Montalto, R.: Reducibility of 1-d Schrödinger equation with unbounded time quasiperiodic perturbations III. J. Math. Phys. 59(12),...
    • Berti, M., Biasco, L., Procesi, M.: KAM for reversible derivative wave equations. Arch. Ration. Mech. Anal. 212, 905–955 (2014) Article MathSciNet...
    • Courant, R., Hilbert, D.: Methods of mathematical physics, vol. I. Interscience Publishers, New York (1953) Google Scholar
    • Eliasson, H., Kuksin, S.B.: On reducibility of Schrödinger equations with quasiperiodic in time potentials. Comm. Math. Phys. 286(1), 125–135...
    • Feola, R., Grébert, B., Nguyen, T.: Reducibility of Schrödinger equation on a Zoll manifold with unbounded potential. J. Math. Phys. 61(7),...
    • Feola, R., Grébert, B.: Reducibility of Schrödinger equation on the sphere. Int. Math. Res. Not. IMRN 19, 15082–15120 (2021) Article Google...
    • Feola, R., Procesi, M.: Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations. J. Diff. Eq. 259(7), 3389–3447...
    • Franzoi, L., Maspero, A.: Reducibility for a fast-driven linear Klein-Gordon equation. Ann. Mat. Pura Appl. 198(4), 1407–1439 (2019) Article...
    • Geng, J., Ren, X., Yi, Y.: Reducibility of quasi-periodic linear KdV equation. J. Dyn. Diff. Eq. 34(1), 271–310 (2022) Article MathSciNet...
    • Grébert, B., Paturel, E.: On reducibility of quantum harmonic oscillator on with quasiperiodic in time potential. Ann. Fac. Sci. Toulouse...
    • Grébert, B., Thomann, L.: KAM for the quantum harmonic oscillator. Comm. Math. Phys. 307(2), 383–427 (2011) Article MathSciNet Google Scholar...
    • Kuksin, S.B.: Analysis of Hamiltonian PDEs. Oxford lecture series in mathematics and its applications, vol. 19. Oxford University Press, Oxford...
    • Liang, Z., Wang, Z.: Reducibility of quantum harmonic oscillator on with differential and quasi-periodic in time potential. J. Diff. Eq....
    • Liang, Z., Wang, Z.: Reducibility of 1D quantum harmonic oscillator with decaying conditions on the derivative of perturbation potentials....
    • Liang, Z., Zhao, Z., Zhou, Q.: 1-d quantum harmonic oscillator with time quasi-periodic quadratic perturbation: reducibility and growth of...
    • Liu, J., Yuan, X.: Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient. Comm. Pure Appl. Math....
    • Lou, Z., Si, J.: Quasi-periodic solutions for the reversible derivative nonlinear Schrödinger equations with periodic boundary conditions....
    • Lou, Z., Wu, J.: KAM tori for the system of coupled quantum harmonic oscillators with reversible perturbations. J. Dyn. Diff. Eq. (2022)....
    • Montalto, R.: A reducibility result for a class of linear wave equations on . Int. Math. Res. Not. IMRN 6, 1788–1862 (2019) Google Scholar
    • Sun, Y., Li, J.: Reducibility of relativistic Schrödinger equation with unbounded perturbations. J. Diff. Equ. 286, 215–247 (2021) Article...
    • Wang, W.: Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations. Comm....
    • Wang, Z., Liang, Z.: Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay. Nonlinearity...
    • Yuan, X., Zhang, K.: A reduction theorem for time dependent Schrödinger operator with finite differentiable unbounded perturbation. J. Math....
    • Zhang, J., Gao, M., Yuan, X.: KAM tori for reversible partial differential equations. Nonlinearity 24, 1189–1228 (2011)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno