Ir al contenido

Documat


Periodic Solutions of a Second Order Discontinuous Nonautonomous Differential Equation

  • Fangfang Jiang [1] ; Yujuan Chen [2] ; Jitao Sun [3]
    1. [1] Jiangnan University

      Jiangnan University

      China

    2. [2] Nantong University

      Nantong University

      China

    3. [3] Tongji University

      Tongji University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01088-8
  • Enlaces
  • Resumen
    • In this paper, we are concerned with a problem of periodic solution for a second order nonautonomous differential equation with a discontinuity line. Under two types of assumptions, we analyze the geometric properties of solutions respectively. Then by using a fixed point theorem, we obtain several existence criteria of periodic solutions, where the periodic solutions are crossing harmonic and subharmonic solutions.

  • Referencias bibliográficas
    • Ahmadi, Z., Lashkaripour, R., Baghani, H., Heidarkhani, S., Caristi, G.: Existence of solutions of infinite system of nonlinear sequential...
    • Ahmadi, Z., Lashkaripour, R., Baghani, H., Heidarkhani, S.: Existence and uniqueness of solutions of nonlinear fractional order problems via...
    • Ahmadi, Z., Lashkaripour, R., Heidartkhani, S.: A new approach to the study of solutions for a fractional boundary value problem in Holder...
    • Cao, Q., Léger, A.: A Smooth and Discontinuous Oscillator: Theory, Methodology and Applications. Springer, Berlin (2016) Google Scholar
    • Cao, Q., Wiercigroch, M., Pavlovskaia, E., Grebogi, C., Thompson, J.: Archetypal oscillator for smooth and discontinuous dynamics. Phys. Rev....
    • Cao, Q., Wiercigroch, M., Pavlovskaia, E., Grebogi, C., Thompson, J.: The limit case response of the archetypal oscillator for smooth and...
    • Cao, Q., Wiercigroch, M., Pavlovskaia, E., Thompson, J., Grebogi, C.: Piecewise linear approach to an archetypal oscillator for smooth and...
    • Chen, H.: Global analysis on the discontinuous limit case of a smooth oscillator. Int. J. Bifurc. Chaos 26(04), 1650061 (2016) Article MathSciNet...
    • Chen, H.: Global bifurcation for a class of planar Filippov systems with symmetry. Qual. Theor. Dyn. Syst. 15(2), 349–365 (2016) Article MathSciNet...
    • Chen, Y., Leung, A.: Bifurcation and Chaos in Engineering. Springer, Berlin (2012) Google Scholar
    • Chen, H., Xie, J.: Harmonic and subharmonic solutions of the SD oscillator. Nonlinear Dyn. 84, 2477–2486 (2016) Article MathSciNet Google...
    • Chen, H., Cao, Z., Li, D., Xie, J.: Global analysis on a discontinuous dynamical system. Int. J. Bifurc. Chaos 27(05), 1750078 (2017) Article...
    • Cheng, Z., Ren, J.: Harmonic and subharmonic solutions for superlinear damped Duffing equation. Nonlinear Anal. RWA 14, 1155–1170 (2013) Article...
    • Di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P., Nordmark, A., Tost, G., Piiroinen, P.: Bifurcations in nonsmooth dynamical systems....
    • Di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications, vol. 163. Springer,...
    • Ding, W.: Fixed points of twist mappings and periodic solutions of ordinary differential equations. Acta Math. Sinica 25, 227–235 (1982) MathSciNet...
    • Ding, W.: On the existence of periodic solutions for Liénard systems. Acta Math. Sinica 25, 626–632 (1982) MathSciNet Google Scholar
    • Ding, T.: Applications of Qualitative Methods of Ordinary Differential Equations. Higher Education Press, Beijing (2004) Google Scholar
    • Filippov, A.: Differential Equations with Discontinuous Right-Hand Sides: Mathematics and its Applications (Soviet Series). Kluwer Academic...
    • Freire, E., Ponce, E., Torres, F.: Canonical discontinuous planar piecewise linear systems. SIAM J. Appl. Dyn. Syst. 11, 181–211 (2012) Article...
    • Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (2013) Google...
    • Jacquemard, A., Teixeira, M.A.: Periodic solutions of a class of non-autonomous second order differential equations with discontinuous right-hand...
    • Jiang, F.: Periodic solutions of discontinuous Duffing equations. Qual. Theor. Dyn. Syst. 19, 1–17 (2020) Article MathSciNet Google Scholar
    • Jiang, F., Shen, J., Zeng, Y.: Applications of the Poincaré–Birkhoff theorem to impulsive Duffing equations at resonance. Nonlinear Anal.-RWA...
    • Jiang, F., Ji, Z., Wang, Y.: Periodic solutions of discontinuous damped Duffing equations. Nonlinear Anal.-RWA 47, 484–495 (2019) Article...
    • Kovacic, I., Brennan, M.: The Duffing Equation: Nonlinear Oscillators and their Behaviour. John Wiley and Sons, London (2011) Book Google...
    • Kunze, M.: Unbounded solutions in non-smooth dynamical systems at resonance. Z. Angew. Math. Mech. 78, 985–986 (1998) Article Google Scholar...
    • Kunze, M.: Non-smooth Dynamical Systems, vol. 1744. Springer, Berlin (2000) Google Scholar
    • Kunze, M., Küpper, T., You, J.: On the application of KAM theory to discontinuous dynamical systems. J. Differ. Equ. 139, 1–21 (1997) Article...
    • Leine, R., van Campen, D., van de Vrande, B.: Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn. 23, 105–164 (2000) Article MathSciNet...
    • Liang, Z., Yang, Y.: Existence and stability of periodic oscillations of a smooth and discontinuous oscillator. Physica A (2020). https://doi.org/10.1016/j.physa.2020.124511 Article...
    • Liu, X., Willms, A.R.: Impulsive controllability of linear dynamical systems with applications to maneuvers of spacecraft. Math. Probl. Eng....
    • Luo, C.: Discontinuous Dynamical Systems. Higher Education Press, Springer, Beijing (2012) Book Google Scholar
    • Mawhin, J.: An extension of a theorem of A. C. Lazer on forced nonlinear oscillations. J. Math. Anal. Appl. 40, 20–29 (1972) Article MathSciNet...
    • Qian, D., Chen, L., Sun, X.: Periodic solutions of superlinear impulsive differential equations: a Geometric Approach. J. Differ. Equ. 259,...
    • Reissig, R.: Contractive mappings and periodically perturbed non-conservative systems. Atti Accad Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur...
    • Zhang, Y., Cao, Q.: The recent advances for an archetypal smooth and discontinuous oscillator. Int. J. Mech. Sci. 214, 106904 (2022) Article...
    • Zhou, B., Chen, H., Xu, H., Zhang, J.: Harmonic solutions for a class of non-autonomous piecewise linear oscillators. Commun. Nonlinear Sci....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno