Ir al contenido

Documat


Random Attractors of a Stochastic Hopfield Neural Network Model with Delays

  • Wenjie Hu [1] ; Quanxin Zhu [1] ; Peter E. Kloeden [3] Árbol académico ; Yueliang Duan [2]
    1. [1] Hunan Normal University

      Hunan Normal University

      China

    2. [2] Shantou University

      Shantou University

      China

    3. [3] Universität Tübingen
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01082-0
  • Enlaces
  • Resumen
    • The global asymptotic behavior of a stochastic Hopfield neural network model (HNNM) with delays is explored by studying the existence and structure of random attractors. It is firstly proved that the trajectory field of the stochastic delayed HNNM admits an almost sure continuous version, which is compact for (where is the delay) by a construction based on the random semiflow generated by the diffusion term due to Mohammed ( Stoch. Stoch. Rep. 29: 89–131, 1990). Then, this version is shown to generate a random dynamical system (RDS) by a Wong–Zakai approximation, after which the existence of a random absorbing set is obtained via uniform apriori estimate of the solutions. Subsequently, the pullback asymptotic compactness of the RDS generated by the stochastic delayed HNNM is established and hence the existence of random attractors is obtained. Sufficient conditions under which the attractors turn out to be an exponential attracting stationary solution are also given. Finally, some numerical simulations illustrate the results.

  • Referencias bibliográficas
    • Arnold, L.: Random Dynamical System. Springer Science & Business Media, (1998)
    • Bharucha-Reid, A.T.: Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc. 269, 8597–8639 (1976) MathSciNet Google Scholar
    • Bessaih, H., Garrido-Atienza, M.J., Schmalfuss, B.: Pathwise solutions and attractors for retarded SPDES with time smooth diffusion coefficients....
    • Caraballo, T., Real, J.: Attractors for 2D-Navier-Stokes models with delays. J. Diff. Equat. 205, 270–296 (2004) Article MathSciNet Google...
    • Chen, Zhang, Lin, Wei, Yang, Dandan, Zuo, Xiaodong: Random attractors and invariant measures for 3D stochastic globally modified Navier–Stokes...
    • Chen, Z., Yang, D., Zhong, S.: Hopfield neural networks with delays driven by colored noise. IEEE Trans. Neural Netw. Learn. Syst. 34(8),...
    • Chua, L.O., Yang, L.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35(10), 1273–1290 (1988) Article MathSciNet Google...
    • Crauel, H.: Random point attractors versus random set attractor. J. London Math. Soc. 63(1), 413–427 (2002) MathSciNet Google Scholar
    • Crauel, H., Flandoli, F.: Attractors for random dynamical systems. Probab. Theory Relat Fields 100(1), 365–393 (1994) Article MathSciNet Google...
    • Crauel, H., Kloeden, P.E.: Nonautonomous and random attractors. Jahresber. Dtsch. Math. Ver. 117, 173–206 (2015) Article MathSciNet Google...
    • Caraballo, T., Kloeden, P.E., Schmalfuss, B.: Exponentially stable stationary solutions for stochastic evolution equations and their perturbation....
    • Duan, J., Lu, K., Schmalfuss, B.: Invariant manifolds for stochastic partial differential equations. Ann Probab 31, 2109–2135 (2003) Article...
    • Flandoli, F., Schmalfuss, B.: Random attractors for the 3d stochastic Navier–Stokes equation with multiplicative white noise. Stoch. Stoch....
    • Gopalsamy, K., He, X.Z.: Stability in asymmetric Hopfield nets with transmission delays. Phys. D-Nonlinear Phenom. 76(4), 344–358 (1994) Article...
    • Guo, S., Li, S.: Invariant measure and random attractors for stochastic differential equations with delay. Qual. Theory Dyn. Syst. 21, 1–38...
    • Hale, J.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1988) Google Scholar
    • Han, X., Kloeden, P.E., Usman, B.: Long term behavior of a random Hopfield neural lattice model. Commun. Pure Appl. Anal. 18, 809–824 (2019) Article...
    • Haykin, S.: Neural Networks. Prentice-Hall, New Jersey (1994) Google Scholar
    • Hopfield, J.J., Tank, D.W.: Computing with neural circuits: a model. Science 233(4764), 625–633 (1986) Article Google Scholar
    • Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci....
    • Hu, W., Zhu, Q.: Spatial-temporal dynamics of a non-monotone reaction-diffusion Hopfield’s neural network model with delays. Neural Comput....
    • Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North Holland-Kodansha-Amsterdam-Tokyo, (1981)
    • Twardowsky, K.: An extension of the Wong–Zakai theorem for stochastic evolution equations in Hilbert spaces. Stoch. Anal. Appl. 10, 471–500...
    • Kloeden, P.E., Lorenz, T.: Mean-square random dynamical systems. J. Differ. Equ. 253, 1422–1438 (2012) Article MathSciNet Google Scholar
    • Kloeden, P.E., Yang, M.: An Introduction to Nonautonomous Dynamical Systems and their Attractors. World Scientific Publishing Co. Pte. Ltd.,...
    • Li, X., Ding, D.: Mean square exponential stability of stochastic Hopfield neural networks with mixed delays. Stat. Prob. Lett. 126, 88–96...
    • Li, Y., Yang, Y., Wu, L.: Delay-distribution-dependent exponential stability criteria for discrete-time recurrent neural networks with stochastic...
    • Liz, E., Ruiz-Herrera, A.: Attractivity, multistability, and bifurcation in delayed Hopfield’s model with non-monotonic feedback. J. Differ....
    • Marcus, C., Westervelt, R.: Stability of analog neural networks with delay. Phys. Rev. A 39(1), 347 (1989) Article MathSciNet Google Scholar...
    • Mohammed, S.-E.A.: Stochastic Functional Differential Equations. Pitman Advanced Publishing Program, Boston London-Melbourne (1984) Google...
    • Mohammed, S.-E.A.: The Lyapunov spectrum and stable manifolds for stochastic linear delay equations. Stoch. Stoch. Rep. 29, 89–131 (1990) Article...
    • Mohammed, S.-E.A., Scheutzow, M.: The stable manifold theorem for non-linear stochastic systems with memory. I: existence of the semiflow....
    • Mohammed, S.-E.A., Scheutzow, M.: The stable manifold theorem for non-linear stochastic systems with memory. II: the local stable manifold...
    • Morita, M.: Associative memory with nonmonotone dynamics. Neural Netw. 6(1), 115–126 (1993) Article Google Scholar
    • Park, H., Kim, S.: “Hardware accelerator systems for artificial intelligence and machine learning’’, in Advances in Computers Editor(s): Shiho...
    • Sui, M., Wang, Y., Han, X., Kloeden, P.E.: Random recurrent neural networks with delays. J. Differ. Equ. 269, 8597–8639 (2020) Article MathSciNet...
    • Sun, Y., Cao, J.: p-th moment exponential stability of stochastic recurrent neural networks with time-varying delays. Nonlinear Anal. RWA...
    • Tank, D.W., Hopfield, J.: Neural computation by concentrating information in time. Proc. Nat. Acad. Sci. 84(7), 1896–1900 (1987) Article MathSciNet...
    • van den Driessche, P., Zou, X.: Global attractivity in delayed Hopfield neural network models. SIAM J. Appl. Math 58(6), 1878–1890 (1998) Article...
    • Varzaneh Ghani, M., Riedel, S., Scheutzow, M.: A dynamical theory for singular stochastic delay differential equations I Linear equations...
    • Wan, L., Sun, J.: Mean square exponential stability of stochastic delayed Hopfield neural networks. Phys. Lett. A 344, 306–318 (2005) Article...
    • Wang, X., Kloeden, P.E., Han, X.: Stochastic dynamics of a neural field lattice model with state dependent nonlinear noise. Nonlinear Differ....
    • Wu, F., Kloeden, P.: Mean-square random attractors of stochastic delay differential equations with random delay. Discrete Contin. Dyn. Syst....
    • Wu, Y., Chen, Y.: Mean square exponential stability of uncertain stochastic neural networks with time-varying delay. Neurocomputing 72, 2379–2384...
    • Wu, Y., Chen, Y.: A unified approach to the stability of generalized static neural networks with linear fractional uncertainties and delays....
    • Yan, W., Li, Y., Ji, S.: Random attractors for first order stochastic retarded lattice dynamical systems. J. Math. Phys. 51, 032702 (2003) Article...
    • Yang, D., Chen, Z., Tomás, C.: Dynamics of a globally modified Navier–Stokes model with double delay. Z. Angew. Math. Phys. 73, 206 (2022) Article...
    • Yang, L., Wang, Y., Kloeden, P.E.: Pullback exponential attractors for non-autonomous recurrent neural networks with discrete and distributed...
    • Yoshizawa, M., Amari, S.: Capacity of associative memory using a nonmonotonic neuron model. Neural Netw. 6(2), 167–176 (1993)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno