Ir al contenido

Documat


Normalized Solutions for Schrödinger Equations with Local Superlinear Nonlinearities

  • Qin Xu ; Gui-Dong Li [1] ; Shengda Zeng [2]
    1. [1] Guizhou University

      Guizhou University

      China

    2. [2] Yulin Normal University

      Yulin Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01071-3
  • Enlaces
  • Resumen
    • In this paper, we consider the following Schrödinger equation:

      where , , , and appears as a Lagrange multiplier. Assume that the nonlinear term f satisfies conditions only in a neighborhood of zero. For f has a subcritical growth, we prove the existence of the positive normalized solution for the equation with sufficiently small . For f has a supercritical growth, we derive the existence of the positive normalized solution for the equation with large enough. In addition, we also obtain infinitely many normalized solutions with sufficiently small for the subcritical case.

  • Referencias bibliográficas
    • Adachi, S., Watanabe, T.: G-invariant positive solutions for a class of locally superlinear Schrödinger equations. J. Math. Anal. Appl. 507,...
    • Alves, C. O.: On existence of multiple normalized solutions to a class of elliptic problems in whole , Z. Angew. Math. Phys., 73 (2022), Paper...
    • Alves, C.O., Ji, C.: Normalized solutions for the Schrödinger equations with -subcritical growth and different types of potentials. J. Geom....
    • Alves, C.O., Ji, C., Miyagaki, O.H.: Normalized solutions for a Schrödinger equation with critical growth in . Calc. Var. Partial Differ....
    • Bartsch, T., de Valeriola, S.: Normalized solutions of nonlinear Schrödinger equations. Arch. Math. (Basel) 100, 75–83 (2013) Article MathSciNet...
    • Bartsch, T., Molle, R., Rizzi, M., Verzini, G.: Normalized solutions of mass supercritical Schrödinger equations with potential. Commun. Partial...
    • Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal....
    • Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Ration. Mech. Anal. 82,...
    • Bieganowski, B., Mederski, J.A.: Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth. J. Funct....
    • Borthwick, J., Chang, X., Jeanjean, L., Soave, N.: Normalized solutions of -supercritical NLS equations on noncompact metric graphs with localized...
    • Chen, Z., Zou, W.: Existence of normalized positive solutions for a class of nonhomogeneous elliptic equations. J. Geom. Anal. 33, 147 (2023) Article...
    • Chu, C., Liu, H.: Existence of positive solutions for a quasilinear Schrödinger equation. Nonlinear Anal. Real World Appl. 44, 118–127 (2018) Article...
    • Costa, D.G., Wang, Z.-Q.: Multiplicity results for a class of superlinear elliptic problems. Proc. Am. Math. Soc. 133, 787–794 (2005) Article...
    • Deng, S., Wu, Q.: Existence of normalized solutions for the Schrödinger equation. Commun. Anal. Mech. 15, 575–585 (2023) Article MathSciNet...
    • Ding, Y., Zhong, X.: Normalized solution to the Schrödinger equation with potential and general nonlinear term: mass super-critical case....
    • Gilbarg, D., Trudinger, N. S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin (2001),...
    • Hirata, J., Tanaka, K.: Nonlinear scalar field equations with constraint: mountain pass and symmetric mountain pass approaches. Adv. Nonlinear...
    • do Ó, J. A. M., Medeiros, E., Severo, U.: On the existence of signed and sign-changing solutions for a class of superlinear Schrödinger equations....
    • Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28, 1633–1659 (1997) Article...
    • Jeanjean, L., Jendrej, J., Le, T.T., Visciglia, N.: Orbital stability of ground states for a Sobolev critical Schrödinger equation. J. Math....
    • Jeanjean, L., Le, T.T.: Multiple normalized solutions for a Sobolev critical Schrödinger equation. Math. Ann. 384, 101–134 (2022) Article...
    • Jeanjean, L., Lu, S.-S.: Nonradial normalized solutions for nonlinear scalar field equations. Nonlinearity 32, 4942–4966 (2019) Article MathSciNet...
    • Jeanjean, L., Lu, S.-S.: A mass supercritical problem revisited. Calc. Var. Partial Differ. Equ. 59, 174 (2020) Article MathSciNet Google...
    • Li, Q., Zou, W.: The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical...
    • Li, X.: Existence of normalized ground states for the Sobolev critical Schrödinger equation with combined nonlinearities. Calc. Var. Partial...
    • Ma, S., Moroz, V.: Asymptotic profiles for a nonlinear Schrödinger equation with critical combined powers nonlinearity. Math. Z. 304, 13–26...
    • Molle, R., Riey, G., Verzini, G.: Normalized solutions to mass supercritical Schrödinger equations with negative potential. J. Differ. Equ....
    • Shibata, M.: Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term. Manuscr. Math. 143, 221–237 (2014) Article...
    • Shibata, M.: A new rearrangement inequality and its application for -constraint minimizing problems. Math. Z. 287, 341–359 (2017) Article...
    • Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269, 6941–6987 (2020) Article MathSciNet...
    • Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279, 108610...
    • Su, Y.: Ground state solution for critical Schrödinger equation with harmonic potential. J. Math. Anal. Appl. 518, 126661 (2023) Article Google...
    • Sun, X., Fu, Y., Liang, S.: Normalized solutions for pseudo-relativistic Schrödinger equations. Commun. Anal. Mech. 16, 217–236 (2024) Article...
    • Wei, J., Wu, Y.: Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities. J. Funct. Anal. 283,...
    • Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1983) Article Google...
    • Willem, M.: Minimax theorems. In: Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston Inc, Boston...
    • Zhang, W., Li, G.-D., Tang, C.-L.: Infinitely many solutions for a class of sublinear Schrödinger equations. J. Appl. Anal. Comput. 8, 1475–1493...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno