Ir al contenido

Documat


Análisis del Lenguaje Natural para la Identificación de Alteraciones Mentales en Redes Sociales: Una Revisión Sistemática de Estudios

  • Mieles, Ismael [1] ; Delgado Meza, Jesus Armando [2] ; Acevedo, Johana [1]
    1. [1] Universidad de Investigación y Desarrollo -UDI, Psicología virtual, Bucaramanga, Colombia
    2. [2] Universidad de Investigación y Desarrollo -UDI, Psicología, Bucaramanga, Colombia
  • Localización: Revista Politécnica, ISSN-e 2477-8990, Vol. 53, Nº. 1, 2024 (Ejemplar dedicado a: Revista Politécnica), págs. 57-72
  • Idioma: español
  • DOI: 10.33333/rp.vol53n1.06
  • Títulos paralelos:
    • Natural Language Analysis for the Identification of Mental Disturbances in Social Networks: A Systematic Review of Studies
  • Enlaces
  • Resumen
    • español

      Las enfermedades mentales constituyen una de las principales causas de angustia en la vida de las personas a nivel individual, y repercuten en la salud y el bienestar de la sociedad. Para captar estas complejas asociaciones, las ciencias computacionales y la comunicación, a través del uso de métodos de procesamiento del lenguaje natural (NLP) en datos recolectados en redes sociales, han aportado prometedores avances para potenciar la atención sanitaria mental proactiva y ayudar al diagnóstico precoz. Por ello, se realizó una revisión sistemática de la literatura acerca de la detección de alteraciones mentales a través de redes sociales, mediante el uso de NLP en los últimos 5 años, que permitió identificar métodos, tendencias y orientaciones futuras, a través del análisis de 73 estudios, de 509 que arrojó la revisión de documentos extraídos de bases de datos científicas. El estudio reveló que, los fenómenos más comúnmente estudiados, correspondieron a Depresión e Ideación suicida, identificados a través del uso de algoritmos como el LIWC, CNN, LSTM, RF y SVM, en datos extraídos principalmente de Reddit y Twitter. Este estudio, finalmente proporciona algunas recomendaciones sobre las metodologías de NLP para la detección de enfermedades mentales, que pueden ser adoptadas en el ejercicio de profesionales interesados en la salud mental, y algunas reflexiones sobre el uso de estas tecnologías.

    • English

      Mental illness is a major cause of distress in people's lives at the individual level and impacts the health and well-being of society. To capture these complex associations, computational science and communication, through the use of natural language processing (NLP) methods on data collected in social networks, have provided promising advances to enhance proactive mental health care and aid in early diagnosis. Therefore, a systematic review of the literature on the detection of mental disorders through social networks, using NLP in the last 5 years, was carried out, which allowed identifying methods, trends and future directions, through the analysis of 73 studies, out of 509 that resulted from the review of documents extracted from scientific databases. The study revealed that the most commonly studied phenomena corresponded to Depression and Suicidal Ideation, identified through the use of algorithms such as LIWC, CNN, LSTM, RF and SVM on data extracted mainly from Reddit and Twitter. This study finally provides some recommendations on NLP methodologies for mental illness detection that can be adopted in the practice of professionals interested in mental health and some reflections on the use of these technologies.

       

  • Referencias bibliográficas
    • Al Asad, N., Pranto, M., Afreen, S., & Islam, M. (2019). Depression detection by analyzing social media posts of user. International Conference...
    • Ambalavan, A. K., Moulahi, B., Azé, J. & Bringay, S. (2019). Unveiling online suicide behavior: What can we learn about mental health...
    • Arigo, D., Pagoto, S., Carter-Harris, L., Lillie, S., & Nebeker, C. (2018). Using social media for health research: Methodological and...
    • Arilla-Andrés, S., García-Martinez, C., & Hoyo, Y. L. Del. (2022). Detection of Suicide Risk Through Social Media: Pilot Study. Revista...
    • Babvey, P., Capela, F., Cappa, C., Lipizzi, C., Petrowski, N. & Ramirez-Marquez, J. (2021). Using social media data for assessing children’s...
    • Bae, Y., Shim, M. & Lee, W. (2021). Schizophrenia Detection Using Machine Learning Approach from Social Media Content. Sensors, 21(17),...
    • Bauer, M., Glenn, T., Monteith, S., Bauer, R., Whybrow, P. C., & Geddes, J. (2017). Ethical perspectives on recommending digital technology...
    • Calvo, R., Milne, D., Hussain, M., & Christensen, H. (2017). Natural language processing in mental health applications using non-clinical...
    • Camacho, J., Moreno, S., Suarez-Obando, F., Puyana, J., & Gómez-Restrepo, C. (2013). El procesamiento de lenguaje natural y su relación...
    • Centola, D. (2010). The spread of behavior in an online social network experiment. Science, 329(5996), 1194-1197. https://doi.org/10.1126/science.1185231
    • Chadha, A., & Kaushik, B. (2022). A Hybrid Deep Learning Model Using Grid Search and Cross-Validation for Effective Classification and...
    • Chancellor, S., & De Choudhury, M. (2020). Methods in predictive techniques for mental health status on social media: a critical review....
    • Chanda, K., Roy, S., Mondal, H., & Bose, R. (2022). To Judge Depression and Mental Illness on Social Media Using Twitter. Universal Journal...
    • Chatrinan, K., Kangpanich, A., Wichit, T., Noraset, T., Tuarob, S., & Tawichsri, T. (2021). Towards Approximating Population-Level Mental...
    • Chatterjee, M., Samanta, P., Kumar, P., & Sarkar, D. (2022). Suicide Ideation Detection using Multiple Feature Analysis from Twitter Data....
    • Chen, Z., Zhang, R., Xu, T., Yang, Y., Wang, J., & Feng, T. (2020). Emotional attitudes towards procrastination in people: A large-scale...
    • Chiong, R., Budhi, G., Dhakal, S., & Chiong, F. (2021). A textual-based featuring approach for depression detection using machine learning...
    • Cobo, M., Lopez-Herrera, A. Herrera-Viedma, E., & Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative...
    • Confederación Salud Mental España (2019). La salud mental en cifras. https://comunicalasaludmental.org/guiadeestilo/la-salud-mental-en-cifras/
    • Coppersmith, G., Leary, R., Crutchley, P., & Fine, A. (2018). Natural language processing of social media as screening for suicide risk....
    • Crestani, F., Losada, D., & Parapar, J. (Ed.). (2022). Early Detection of Mental Health Disorders by Social Media Monitoring: The First...
    • Dos Santos, B., Steiner, M., Fenerich, A., & Lima, R. (2019). Data mining and machine learning techniques applied to public health problems:...
    • ElDin, D., Taha, M., & Khalifa, N. (2019). SentiNeural: A Depression Clustering Technique for Egyptian Women Sentiments. International...
    • Fazekas, B., Megaw, B., Eade, D. & Kronfeld, N. (2021). Insights into the real-life experiences of people living with epilepsy: A qualitative...
    • Fernández, R. (2020). Panorama mundial de las redes sociales. Statista. https://es. statista. com/estudio/32777/panorama-mundial-delas-redes-sociales-dossier-statista.
    • Ferreira, R., Trifan, A., & Oliveira, J. L. (2022). Early risk detection of mental illnesses using various types of textual features....
    • Garg, M. (2021). A survey on different dimensions for graphical keyword extraction techniques. Artificial Intelligence Review, 54, 4731–4770....
    • Gaur, M., et al., (2019). Knowledge-aware assessment of severity of suicide risk for early intervention. The world wide web conference, 514-525....
    • Glaser, E., Morain, A., Gemmell, J. & Raicu, D. (2020). Comparing automatically extracted topics from online suicidal ideation and the...
    • Gong, Y., Shin, K., & Poellabauer, C. (2018, August). Improving LIWC using soft word matching. In Proceedings of the 2018 ACM international...
    • Guntuku, S., et al., (2019). Studying expressions of loneliness in individuals using twitter: an observational study. BMJ open, 9(11), 1-8....
    • Harrigian, K., Aguirre, C., & Dredze, M. (2020). On the state of social media data for mental health research. arXiv preprint, 1. https://doi.org/10.48550/arXiv.2011.05233
    • Hlatshwako, T., Shah, S., Kosana, P., Adebayo, E., Hendriks, J., Larsson, E. C., … Tucker, J. (2021). Online health survey research during...
    • Huarcaya-Victoria, J. (2020). Consideraciones sobre la salud mental en la pandemia por COVID 19. Revista peruana de medicina experimental...
    • Joshi, D., & Patwardhan, M. (2020). An analysis of mental health of social media users using unsupervised approach. Computers in Human...
    • Katchapakirin, K., Wongpatikaseree, K., Yomaboot, P., & Kaewpitakkun, Y. (2018). Facebook social media for depression detection in the...
    • Kim, J., Lee, J., Park, E., & Han, J. (2020). A deep learning model for detecting mental illness from user content on social media. Scientific...
    • Koh, J., & Liew, T. (2020). How loneliness is talked about in social media during COVID-19 pandemic: text mining of 4,492 Twitter feeds....
    • Kour, H., & Gupta, M. K. (2022). Depression and Suicide Prediction Using Natural Language Processing and Machine Learning. Lecture Notes...
    • Kour, H., & Gupta, M. K. (2022). Predicting the language of depression from multivariate twitter data using a feature-rich hybrid deep...
    • Kumar, A., & Nayar, K. (2021). COVID 19 and its mental health consequences. Journal of Mental Health, 30(1), 1-2. https://doi.org/10.1080/09638237.2020.1757052
    • Kumar, P., Samanta, P., Dutta, S., Chatterjee, M., & Sarkar, D. (2022). Feature Based Depression Detection from Twitter Data Using Machine...
    • Kumar, S., & Nisha, Z. (2022). Does Social Media Feed Tell about Your Mental State? A Deep Randomised Neural Network Approach. Proceedings...
    • Lekkas, D., Klein, R., & Jacobson, N. (2021). Predicting acute suicidal ideation on Instagram using ensemble machine learning models....
    • Li, C., Liu, H., Yin, B., & Yang, J. (2022). Weibo Depression Posts Detection by Natural Language Processing. Highlights in Science, Engineering...
    • Li, Q., Zhao, L., Xue, Y., & Feng, L. (2021). Stress-buffering pattern of positive events on adolescents: An exploratory study based on...
    • Liu, J., Shi, M., & Jiang, H. (2022). Detecting Suicidal Ideation in Social Media: An Ensemble Method Based on Feature Fusion. International...
    • López-Belmonte, J., Marín-Marín, J.-A., Soler-Costa, R. & Moreno-Guerrero, A. (2020). Arduino advances in web of science. A scientific...
    • López-Úbeda, P., Plaza-del-Arco, F., Díaz-Galiano, M., Lopez, L., & Martín-Valdivia, M. (2019). Detecting anorexia in Spanish tweets....
    • Mac-Ginty, S., Jiménez-Molina, A. & Martínez, V. (2021). Impacto de la pandemia por COVID 19 en la salud mental de estudiantes universitarios...
    • Marín-Marín, J. A., Moreno-Guerrero, A. J., Dúo-Terrón, P., & López-Belmonte, J. (2021). STEAM in education: a bibliometric analysis of...
    • Marshall, C., Lanyi, K., Green, R., Wilkins, G. C., Pearson, F., & Craig, D. (2022). Using Natural Language Processing to Explore Mental...
    • Martínez, M. A., Cobo, M. J., Herrera, M., & Herrera-Viedma, E. (2015). Analyzing the scientific evolution of social work using science...
    • Meena, R., & Thulasi Bai, V. (2022). Depression Detection on COVID 19 Tweets Using Chimp Optimization Algorithm. Intelligent Automation...
    • Mehedy, M., Nanda, U. & Faruqe, O. (2021). Ranking Mental Illness among Social Media Users. International Conference on Computer, Communication,...
    • Melvin, S., Jamal, A., Hill, K., Wang, W. & Young, S. (2019). Identifying Sleep-Deprived Authors of Tweets: Prospective Study. JMIR mental...
    • Mendu, S., Baglione, A., Baee, S., Wu, C., Ng, B., Shaked, A., Clore, G., Boukhechba, M., & Barnes, L. (2020). A framework for understanding...
    • Moessner, M., Feldhege, J., Wolf, M., & Bauer, S. (2018). Analyzing big data in social media: Text and network analyses of an eating disorder...
    • Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred Reporting Items for Systematic Reviews and MetaAnalyses: The...
    • Mori, K., & Haruno, M. (2021). Differential ability of network and natural language information on social media to predict interpersonal...
    • Nadeem, A., Naveed, M., Islam Satti, M., Afzal, H., Ahmad, T., & Kim, K. Il. (2022). Depression Detection Based on Hybrid Deep Learning...
    • Nandhini, B., & Sheeba, J. (2015). Online social network bullying detection using intelligence techniques. Procedia Computer Science,...
    • Narynov, S., Mukhtarkhanuly, D., & Omarov, B. (2020). Dataset of depressive posts in Russian language collected from social media. Data...
    • Nasrullah, S., & Jalali, A. (2022). Detection of Types of Mental Illness through the Social Network Using Ensembled Deep Learning Model....
    • Noraset, T., Chatrinan, K., Tawichsri, T., Thaipisutikul, T., & Tuarob, S. (2022). Language-agnostic deep learning framework for automatic...
    • Ophir, Y., Asterhan, C., & Schwarz, B. (2019). The digital footprints of adolescent depression, social rejection and victimization of...
    • Organización Mundial de la Salud (2020). Día Mundial de la Salud Mental: una oportunidad para impulsar un aumento a gran escala de la inversión...
    • Organización Mundial de la Salud. (2017). Depression and Other Common Mental Disorders. https://apps.who.int/iris/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf
    • Palmatier, R. W., Houston, M. B., & Hulland, J. (2018). Review articles: Purpose, process, and structure. Journal of the Academy of Marketing...
    • Perera, A., & Fernando, P. (2021). Accurate Cyberbullying detection and prevention on social media. Procedia Computer Science, 181, 605-611....
    • Perestelo-Pérez, L. (2013). Estándares sobre cómo desarrollar y reportar revisiones sistemáticas en psicología y salud. Revista Internacional...
    • Preotiuc-Pietro, D., Carpenter, J., Giorgi, S., & Ungar, L. (2016). Studying the Dark Triad of personality through Twitter behavior. In...
    • Prince, M. C., & Srinivas, L. N. B. (2022). A Review and Design of Depression and Suicide Detection Model Through Social Media Analytics....
    • Priya, E., Savita, K., & Zaffar, M. (2021). Depression Detection in Tweets from Urban Cities of Malaysia using Deep Learning. International...
    • Ragheb, W., Aze, J., Bringay, S., & Servajean, M. (2021). Negatively Correlated Noisy Learners for At-risk User Detection on Social Networks:...
    • Ramirez-Cifuentes, D., Largeron, C., Tissier, J., Baeza-Yates, R., & Freire, A. (2021). Enhanced Word Embedding Variations for the Detection...
    • Rego, B., Rego,N., & Kunder, M. (2021). Social Media Analysis for Mental Health Evaluation. International Journal for Research in Applied...
    • Ren, L., Lin, H., Xu, B., Zhang, S., Yang, L., & Sun, S. (2021). Depression detection on reddit with an emotion-based attention network:...
    • Ricard, B., & Hassanpour, S. (2021). Deep learning for identification of alcohol-related content on social media (Reddit and Twitter):...
    • Sabina, A. Chulvi, B., & Rosso, P. (2021). On the explainability of automatic predictions of mental disorders from social media data....
    • Saini, G., Yadav, N., & Kamath S, S. (2022). Ensemble Neural Models for Depressive Tendency Prediction Based on Social Media Activity...
    • Sarkar, D., Kumar, P., Samanta, P., Dutta, S., & Chatterjee, M. (2022). A Two-Level Multi-Modal Analysis for Depression Detection From...
    • Schoene, A. M., Bojanic, L., Nghiem, M. Q., Hunt, I. M., & Ananiadou, S. (2022). Classifying suicide-related content and emotions on Twitter...
    • Silveira, B., Couto, A., &Murai, F. (2018). Online social networks in health care: a study of mental disorders on Reddit. IEEE/WIC/ACM...
    • Silveira, B., Silva, H., Murai, F., & da Silva, A. (2021). Predicting user emotional tone in mental disorder online communities. Future...
    • Soler-Costa, R., Moreno-Guerrero, A. J., Lopez-Belmonte, J., & Marín-Marín, J. (2021). Co-word analysis and academic performance of the...
    • Sun, L., & Luo, Y. (2022). Identification and analysis of depression and suicidal tendency of Sina Weibo users based on machine learning....
    • Tan, H., Peng, S., Zhu, C., You, Z., Miao, M., & Kuai, S. (2021). Long-term Effects of the COVID-19 Pandemic on Public Sentiments in Mainland...
    • Tejaswini, V., Babu, K., & Sahoo, B. (2022). Depression Detection from Social Media Text Analysis using Natural Language Processing Techniques...
    • Uban, A. S., Chulvi, B., & Rosso, P. (2021). On the Explainability of Automatic Predictions of Mental Disorders from Social Media Data....
    • Urban, C., & Gates, K. (2021). Deep learning: A primer for psychologists. Psychological Methods, 26(6), 743-773. https://doi.org/10.1037/met0000374
    • Viviani, M., Crocamo, C., Mazzola, M., Bartoli, F., Carrà, G., & Pasi, G. (2021). Assessing vulnerability to psychological distress during...
    • Wang, Y., Zhao, Y., Zhang, J., Bian, J., & Zhang, R. (2020). Detecting associations between dietary supplement intake and sentiments within...
    • Wongkoblap, A., Vadillo, M. A., & Curcin, V. (2017). Researching mental health disorders in the era of social media: systematic review....
    • Wongkoblap, A., Vadillo, M. A., & Curcin, V. (2021). Deep Learning With Anaphora Resolution for the Detection of Tweeters With Depression:...
    • Yang, K., Zhang, T., & Ananiadou, S. (2022). A mental state Knowledge–aware and Contrastive Network for early stress and depression detection...
    • Yao, H., Rashidian, S., Dong, X., Duanmu, H., Rosenthal, R. N., & Wang, F. (2020). Detection of suicidality among opioid users on reddit:...
    • Zanwar, S., Wiechmann, D., Qiao, Y., & Kerz, E. (2022). Exploring Hybrid and Ensemble Models for Multiclass Prediction of Mental Health...
    • Zhang, M., Lu, S., Li, M., Zhai, Q., Zhou, J., Lu, X., Xu, J., Xue, J., & Zhong, N. (2017). SVM classification model in depression recognition...
    • Zhang, T., Schoene, A., Ji, S., & Ananiadou, S. (2022). Natural language processing applied to mental illness detection: a narrative review....
    • Zhang, W., Seltzer, T., & Bichard, S. (2013). Two sides of the coin: Assessing the influence of social network site use during the 2012...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno