Ir al contenido

Documat


Improvement of the Mechanical Properties of Structural Concrete Using Microporous Ethylene Vinyl Acetate

  • Chaname Bustamante, Josef Alexander [1] ; García Chumacero, Juan Martín [1] ; Arriola Carrasco, Guillermo Gustavo [2]
    1. [1] Universidad Señor de Sipán

      Universidad Señor de Sipán

      Chiclayo, Perú

    2. [2] Universidad Nacional de Jaén, Departamento Académico de Ingeniería Civil, Jaén, Perú
  • Localización: Revista Politécnica, ISSN-e 2477-8990, Vol. 53, Nº. 2, 2024 (Ejemplar dedicado a: Revista Politecnica), págs. 17-26
  • Idioma: inglés
  • DOI: 10.33333/rp.vol53n2.02
  • Títulos paralelos:
    • Mejoramiento de las Propiedades Mecánicas del Concreto Estructural Utilizando Microporoso Etileno Acetato de Vinilo
  • Enlaces
  • Resumen
    • español

      A través del paso de los años, en todo el mundo se ha tratado de incrementar el reciclaje de materiales, sobre todo los de origen artificial, esto con la finalidad de producir compuestos que se sean sostenibles. Dentro de estos materiales destaca el concreto como un elemento versátil, al que se le puede añadir diferentes agentes externos; sin embargo, muchos de ellos al no ser compatibles con los agregados, el cemento o el agua, pueden provocar algunas alteraciones en su desempeño mecánico. Por lo expuesto, la presente investigación abordó el estudio de un material artificial llamado Microporoso Etileno Acetato de Vinilo (MEVA), con el fin de evaluar su influencia en las propiedades mecánicas del concreto estructural. Se utilizaron adiciones de MEVA en rangos de 5.00 %, 10.00 %, 15.00 % y 20.00 % respecto al volumen del concreto, para analizar su comportamiento en la mezcla, tanto en las propiedades físicas y mecánicas. Los resultados muestran que la trabajabilidad y peso unitario se ven afectadas ante el aumento de MEVA. A pesar de ello, el desempeño mecánico mostró significativos incrementos en la resistencia a la compresión en 8.81 %, tracción en 22.86 %, flexión en 24.51 % y módulo de elasticidad en 2.12 %, con la adición al 5.00 % de MEVA a los 28 días. No obstante, a mayores dosis existe una reducción de dichas resistencias. Por lo expuesto, se concluye en que la incorporación de MEVA en 5.00 % mejora en gran media las propiedades mecánicas del concreto para uso estructural, en relación a la resistencia teórica de diseño de 21.00 MPa.

       

    • English

      Over the years, the world has tried to increase the recycling of materials, especially those of artificial origin, this in order to produce compounds that are sustainable and sustainable. Among these materials, concrete stands out as a versatile element, to which different external agents can be added; however, since many of them are not compatible with aggregates, cement or water, can cause some alterations in their mechanical performance. Therefore, the present investigation addressed the study of an artificial material called Microporous Ethylene Vinyl Acetate (MEVA), in order to evaluate its influence on the mechanical properties of structural concrete. MEVA additions were used in ranges of 5.00 %, 10.00 %, 15.00 % and 20.00 % with respect to the volume of concrete, to analyze its behavior in the mix, both in physical and mechanical properties. The results show that the workability and unit weight are affected by the increase in MEVA. Despite this, the mechanical performance showed significant increases in the compressive strength of 8.81 %, tensile of 22.86 %, flexion of 24.51 % and modulus of elasticity of 2.12 %, with the addition of 5.00 % of MEVA after 28 days. Nevertheless, at higher doses there is a reduction in said strengths. For these reasons, it is concluded that the incorporation of MEVA at 5.00 % greatly improves the mechanical properties of concrete for structural use, in relation to the theoretical design strength of 21.00 MPa.

       

    • português

      Ao longo dos anos, o mundo tem tentado aumentar a reciclagem de materiais, especialmente os de origem artificial, com o objetivo de produzir compósitos sustentáveis. Entre esses materiais, o concreto se destaca como um elemento versátil, ao qual podem ser adicionados diferentes agentes externos; entretanto, muitos deles, por não serem compatíveis com agregados, cimento ou água, podem causar algumas alterações em seu desempenho mecânico. Portanto, a presente pesquisa abordou o estudo de um material artificial denominado Acetato de Etileno Vinila Acetato de Etileno Vinila (MEVA) microporoso, com o objetivo de avaliar sua influência nas propriedades mecânicas do concreto estrutural. Adições de MEVA nas faixas de 5,00%, 10,00%, 15,00% e 20,00% em relação ao volume de concreto foram utilizadas para analisar seu comportamento na mistura, tanto nas propriedades físicas quanto nas mecânicas. Os resultados mostram que a trabalhabilidade e o peso unitário são afetados pelo aumento de MEVA, porém, o desempenho mecânico mostrou aumentos significativos na resistência à compressão de 8,81%, na resistência à tração de 22,86% e na resistência à flexão de 24,51%, com a adição de 5,00% de MEVA aos 28 dias, porém, em doses maiores, há uma redução dessas resistências. Portanto, conclui-se que a incorporação de MEVA a 5,00% melhora muito as propriedades mecânicas do concreto para uso estrutural, em relação à resistência teórica de projeto de 21,00 MPa.

  • Referencias bibliográficas
    • Ahmad, I., Khan, K. A., Ahmad, T., Alam, M., & Bashir, M. T. (2022). Influence of accelerated curing on the compressive strength of polymer-modified...
    • ASTM C39 (2021). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA,...
    • ASTM C78 (2022). Standard Test Method for Flexural trength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International, West...
    • ASTM C136 (2020). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, West Conshohocken, PA, USA, 4(2)....
    • ASTM C138 (2017). Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete. ASTM International, West...
    • ASTM C143 (2020). Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International, West Conshohocken, PA, USA, 4(2). https://doi.org/10.1520/C0143_C0143M-20
    • ASTM C150 (2022). Standard Specification for Portland Cement. ASTM International, West Conshohocken, PA, USA, 4(1). https://doi.org/10.1520/C0150_C0150M-22
    • ASTM C469 (2022). Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. ASTM International,...
    • ASTM C496 (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken,...
    • Azadmanesh, H., Hashemi, S., & Ghasemi, S. (2021). The effect of styrene-butadiene rubber and ethylene vinyl acetate polymers on the mechanical...
    • Baptista, M., Da Luz Garcia, M., Pinho, S., Lopes, M., Almeida, M., Coelho, C., & Fonseca, C. (2021). Valorization of EVA waste from footwear...
    • Carneiro, F., Moreira, K., Sampaio, A., & Espinosa, R. (2020). Incorporation of vinyl ethylene acetate residue into the production of...
    • Chicoma, A., Quiroz, R., Muñoz, S., & Villena, L. (2023). Influence of the physical and mechanical properties of concrete by adding rubber...
    • De Brito, J., & Kurda, R. (2020). Special issue low binder concrete and mortars. Applied Sciences (Switzerland), 10(11). https://doi.org/10.3390/app10113866
    • Dulsang, N., Kasemsiri, P., Posi, P., Hiziroglu, S., & Chindaprasirt, P. (2016). Characterization of an environment friendly lightweight...
    • Farhoud, A., Mansour, M., Shoukry, R., El Bagoury, O., El Akkad, S., Farag, M., Hamza, A., El Nahas, E., Hussam, A., & Aboud-Zeid, M....
    • Ghally, E., Khalil, H., Ragab, A., & Bakr, M. (2022). Evaluation the chemical and mechanical properties of EVA modified concrete. Egyptian...
    • Gregorova, V., Ledererova, M., & Stefunkova, Z. (2017). Investigation of influence of recycled plastics from cable, ethylene vinyl acetate...
    • Gregorová, V., Štefunková, Z., & Ledererová, M. (2020). Experimental study of the recycled plastic aggregate lightweight composites based...
    • Ioana, A., Paunescu, L., Constantin, N., Rucai, V., Dobrescu, C., Pasare, V., & Istrate, A. (2023). High-strength and heat-insulating...
    • Ismail, M., Noruzman, A., Bhutta, M., Yusuf, T., & Ogiri, I. (2016). Effect of vinyl acetate effluent in reducing heat of hydration of...
    • Khan, K., Ahmad, I., & Alam, M. (2019). Effect of ethylene vinyl acetate (EVA) on the setting time of cement at different temperatures...
    • Kulesza, M., Debski, D., Fangrat, J., & Michalak, J. (2020). Effect of redispersible polymer powders on selected mechanical properties...
    • Lee, J., Shafigh, P., & Bahri, S. (2019). Comparative study of mechanical properties for substitution of normal weight coarse aggregate...
    • Liu, S., Yang, S., Kong, Y., Wan, T., & Zhao, G. (2019). Anti-cracking property of EVA-modified polypropylene fiber-reinforced concrete...
    • Machado, R., Pereira, L., Zanelato, E., Manhães, A., Azevedo, A., Marvila, M., Alexandre, J., Monteiro, S., & Petrucci, L. (2019). Incorporation...
    • Marques, M., Antunes, M., Mancini, S., & Oliveira, P. (2019). Interpretation of X-Ray images to investigate the viability of incorporating...
    • Moreira, R., de Souza, T., Pessôa, J., Da Silva, E., & Amado, F. (2020). Study of the use of crushed sand in cementitious composites with...
    • Muñoz, S., Garcia, J. M., Charca, S., & Villena, L. (2023). Influence of the secondary aluminum chip on the physical and mechanical properties...
    • Ngassam, I., Schmidt, W., Beushausen, H., & Kühne, H. (2018). Intrinsic modification of repair mortars made with EVA and CaO, impacts...
    • Pacheco, F., Krumenauer, M., Silva, L., Tutikian, F., & Oliveira, M. (2017). Ethylene vinyl acetate (EVA) aggregates usage evaluation...
    • Parra, C., Sánchez, E., Miñano, I., Benito, F., & Hidalgo, P. (2019). Recycled plastic and cork waste for structural lightweight concrete...
    • Selvakumar, M., Geetha, S., & Muthu, L. (2022). Investigation on properties of aerated concrete with foundry sand as replacement for fine...
    • Serelis, E., & Vaitkevicius, V. (2022). Utilization of glass shards from municipal solid waste in aluminium-based ultra-lightweight concrete....
    • Shang, H., Hou, G., Sun, C., Lu, D., Zhao, X., & Fan, L. (2023). EVA enhanced cementitious materials based coatings for the improvement...
    • Sldozian, R., Hamad, A., & Al-Rawe, H. (2023). Mechanical properties of lightweight green concrete including nano calcium carbonate. Journal...
    • Swarnkar, P., & Srivastava, A. (2021). Durability of styrene-butadiene latex modified cement concrete. International Research Journal...
    • Xiong, G., Wang, C., Zhou, S., Jia, X., Luo, W., Liu, J., & Peng, X. (2019). Preparation of high strength lightweight aggregate concrete...
    • Zhang, Y., Du, W., Li, Y., & Yu, J. (2018). Preparation of EVA emulsion self-healing capsules for concrete and evaluation of healing properties....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno