Ir al contenido

Documat


The current state of play in the Landsberg-Berwald problem of Finsler geometry

  • Mike Crampin [1]
    1. [1] Orchard Rising, Herrings Lane, Burnham Market, Norfolk, UK
  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 39, Nº 1, 2024, págs. 57-95
  • Idioma: inglés
  • DOI: 10.17398/2605-5686.39.1.57
  • Enlaces
  • Resumen
    • A progress report on the (still unresolved) Landsberg-Berwald problem of Finsler geometry: whether there can be non-Berwaldian regular Landsberg spaces

  • Referencias bibliográficas
    • T. Aikou, Some remarks on Berwald manifolds and Landsberg manifolds, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 26 (2010), 139 – 148.
    • T. Aikou, Averaged Riemannian metrics and connections with application to locally conformal Berwald manifolds, Publ. Math. Debrecen 81 -(1-2)...
    • H. Akbar-Zadeh, Sur les espaces de Finsler à courbures sectionnelles constantes, Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), 271 – 322.
    • S. Bácsó, F. Ilosvay, B. Kis, Landsberg spaces with common geodesics, Publ. Math. Debrecen 42 (1-2) (1993), 139 – 144.
    • S. Bácsó, R. Yoshikawa, Weakly-Berwald spaces, Publ. Math. Debrecen 61 (1-2) (2002), 219 – 231.
    • D. Bao, On two curvature-driven problems in Riemann-Finsler geometry, in “ Finsler geometry, Sapporo 2005 – in memory of Makoto Matsumoto...
    • D. Bao, S.-S. Chern, Z. Shen, “ An introduction to Riemann-Finsler geometry ”, Grad. Texts in Math., 200, Springer-Verlag, New York, 2000.
    • P. Centore, Volume forms in Finsler spaces, Houston J. Math. 25 (1999), 625 – 640.
    • X. Cheng, The (α, β)-metrics of scalar flag curvature, Differential Geom. Appl. 35 (2014), 361 – 369.
    • M. Crampin, On Landsberg spaces and the Landsberg-Berwald problem, Houston J. Math. 37 (4) (2011), 1103 – 1124.
    • M. Crampin, On the construction of Riemannian metrics for Berwald spaces by averaging, Houston J. Math. 40 (3) (2014), 737 – 750.
    • M. Crampin, A condition for a Landsberg space to be Berwaldian, Publ. Math. Debrecen 93 (1-2) (2018), 143 – 155.
    • M. Crampin, Finsler spaces of (α, β) type and semi-C-reducibility, Publ. Math. Debrecen 98 (3-4) (2021), 419 – 454.
    • M. Crampin, Invariant volumes, weakly-Berwald Finsler spaces, and the Landsberg-Berwald problem, Publ. Math. Debrecen 100 (1-2) (2022), 101...
    • M. Crampin, Isometries and geodesic invariants of Finsler spaces of (α, β) type, 2022, DOI:10.13140/RG.2.2.10839.55203.
    • M. Crampin, On parallel transport in Finsler spaces, Publ. Math. Debrecen 92 (3-4) (2023), 343 – 370.
    • M. Crampin, S-curvature, E-curvature, and Berwald scalar curvature of Finsler spaces, Differential Geom. Appl. 92 (2024), paper no. 102080,...
    • M. Crampin, D.J. Saunders, Holonomy of a class of bundles with fibre metrics, Publ. Math. Debrecen 81 (1-2) (2012), 199 – 234.
    • S. Deng, Z. Hou, The group of isometries of a Finsler space, Pacific J. Math. 207 (1) (2002), 149 – 155.
    • S.G. Elgendi, On the classification of Landsberg spherically symmetric Finsler metrics, Int. J. Geom. Methods Mod. Phys. 18 (14) (2021), paper...
    • H. Feng, Y. Han, M. Li, An equivalence theorem of a class of Minkowski norms and its applications, Sci. China Math. 64 (2021), 1429 – 1446.
    • H. Feng, M. Li, An equivalence theorem for a class of Minkowski spaces, 2018, arXiv:1812.11938v2.
    • Y. Ichijyō, Finsler manifolds modeled on a Minkowski space, J. Math. Kyoto Univ. 16 (1976), 639 – 652.
    • Y. Ichijyō, On holonomy mappings associated with a nonlinear connection, J. Math. Tokushima Univ. 17 (1983), 1 – 9.
    • L. Kozma, On holonomy groups of Landsberg manifolds, Tensor (N.S.) 62 (1) (2000), 87 – 90.
    • B. Li, Z. Shen, Ricci curvature tensor and non-Riemannian quantities, Canad. Math. Bull. 58 (3) (2015), 530 – 537.
    • M. Li, Equivalence theorems of Minkowski spaces and an application in Finsler geometry, Acta Math. Sinica (Chin. Ser.) 62 (2) (2019), 177...
    • M. Li, L. Zhang, Properties of Berwald scalar curvature, Front. Math. China 15 (6) (2020), 1143 – 1153.
    • M. Matsumoto, On C-reducible Finsler spaces, Tensor (N.S.) 24 (1972), 29 – 37.
    • M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31 (1992), 43 – 83.
    • M. Matsumoto, An improved proof of Numata and Shibata’s theorems on Finsler spaces of scalar curvature, Publ. Math. Debrecen 64 (3-4) (2004),...
    • M. Matsumoto, C. Shibata, On semi-C-reducibility, T -tensor= 0, and S4-likeness of Finsler spaces, J. Math. Kyoto Univ. 19 (1979), 301–314.
    • V.S. Matveev, M. Troyanov, The Binet-Legendre metric in Finsler geometry, Geom. Topol. 16 (2012), 2135 – 2170.
    • X. Mo, L. Zhou, The curvatures of spherically symmetric Finsler metrics in R n , 2014, arXiv:1202.4543.
    • Z. Muzsnay, The Euler-Lagrange PDE and Finsler metrizability, Houston J. Math. 32 (1) (2006), 79 – 98.
    • Z. Muzsnay, P.T. Nagy, Finsler manifolds with non-Riemannian holonomy, Houston J. Math. 38 (1) (2012), 77 – 92.
    • B. Najafi, Z. Shen, A. Tayebi, Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata 131...
    • S. Numata, On Landsberg spaces of scalar curvature, J. Korean Math. Soc. 12 (2) (1975), 97 – 100.
    • Z. Shen, “ Differential geometry of spray and Finsler spaces ”, Kluwer Academic Publishers, Dordrecht, 2001.
    • Z. Shen, On R-quadratic Finsler spaces, Publ. Math. Debrecen 58 (1-2) (2001), 263 – 274.
    • Z. Shen, Landsberg curvature, S-curvature and Riemann curvature, in “ A sampler of Riemann-Finsler geometry ” (edited by David Bao, Robert...
    • Z. Shen, On a class of Landsberg metrics in Finsler geometry, Canad. J. Math. 61 (2009), 1357 – 1374.
    • C. Shibata, On the curvature tensor R hijk of Finsler spaces of scalar curvature, Tensor (N.S.) 32 (1978), 311 – 317.
    • J. Szilasi, R. Lovas, D. Kertész, “ Connections, sprays and Finsler structures ”, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ,...
    • J. Szilasi, R.L. Lovas, D.Cs. Kertész, Several ways to a Berwald manifold — and some steps beyond, Extracta Math. 26 (2011), 89 – 130.
    • A. Tayebi, A survey on unicorns in Finsler geometry, J. Math. Com. 2 (2) (2021), 239 – 250.
    • R.G. Torrome, F. Etayo, On a rigidity condition for Berwald spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 104 (1) (2010), 69...
    • Sz. Vattamány, Projection onto the indicatrix bundle of a Finsler manifold, Publ. Math. Debrecen 58 (1-2) (2001), 193 – 221.
    • Cs. Vince, A new proof of Szabó’s theorem on the Riemann-metrizability of Berwald manifolds, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 21...
    • M. Xu, S. Deng, The Landsberg equation of a Finsler space, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22 (1) (2021), 31 – 51.
    • M. Xu, V.S. Matveev, Proof of Laugwitz conjecture and Landsberg unicorn conjecture for Minkowski norms with SO(k) × SO(n − k)-symmetry, Canad....
    • K. Yano, “ The theory of Lie derivatives and its applications ”, Bibliotheca Mathematica 3, North-Holland, Amsterdam, 1957.
    • C. Yu, H. Zhu, On a new class of Finsler metrics, Differential Geom. Appl. 29 (2) (2011), 244 – 254.
    • L. Zhou, Spherically symmetric Finsler metrics in R n , Publ. Math. Debrecen 80 (1-2) (2012), 67 – 77.
    • S. Zhou, J. Wang, B. Li, On a class of almost regular Landsberg metrics, Sci. China Math. 62 (2019), 935 – 960.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno