Ir al contenido

Documat


A topological characterization of an almost Boolean algebra

  • K. Ramanuja Rao [1] ; K. Rama Prasad [2] ; G. Vara Lakshmi [2] ; Ch. Santhi Sundar Raj [2]
    1. [1] Fiji National University

      Fiji National University

      Fiyi

    2. [2] Department of Engineering Mathematics, Andhra University Visakhapatnam - 530003, A.P., India
  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 39, Nº 1, 2024, págs. 47-55
  • Idioma: inglés
  • DOI: 10.17398/2605-5686.39.1.47
  • Enlaces
  • Resumen
    • For any Boolean space X and a discrete almost distributive lattice D, it is proved that the set C(X, D) of all continuous mappings of X into D, when D is equipped with the discrete topology, is an almost Boolean algebra under pointwise operations. Conversely, it is proved that any almost Boolean algebra is a homomorphic image of C(X,D) for a suitable Boolean space X and a discrete almost distributive lattice D.

  • Referencias bibliográficas
    • Ch. Santhi Sundar Raj, K. Rama Prasad, M. Santhi, R. Vasu Babu, The C(X, D), a characterization of a Stone almost distributive lattice, Asian-Eur....
    • R.C. Mani, K. Krishna Rao, K. Rama Prasad, Ch. Santhi Sundar Raj, Sheaf representation of almost Boolean algebras, Int. J. Math. Comput. Sci....
    • U.M. Swamy, Ch. Santhi Sundar Raj, R. Chudamani, On almost Boolean algebras and rings, International Journal of Mathematical Archive 7 (12)...
    • U.M. Swamy, Ch. Santhi Sundar Raj, R. Chudamani, Annihilators and maximisors in ADL’s, International Journal of Computer and Mathematical...
    • U.M. Swamy, G.C. Rao, Almost distributive lattices, J. Austral. Math. Soc. Ser. A 31 (1981), 77 – 91.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno