Ir al contenido

Documat


Estimating the Gumbel-Barnett Copula Parameter of Dependence

  • Autores: Jennyfer Portilla Yela, José Rafael Tovar Cuevas
  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 41, Nº. 1, 2018, págs. 53-73
  • Idioma: inglés
  • DOI: 10.15446/rce.v41n1.64900
  • Títulos paralelos:
    • Estimación del parámetro de dependencia de la copula Gumbel-Barnett
  • Enlaces
  • Resumen
    • español

      Resumen En este artículo, desarrollamos una evaluación empírica de cuatro procedimientos de estimación para el parámetro de dependencia, de la función copula Gumbel Barnett obtenida a partir de la distribución Gumbel tipo I. Se usó el método de estimación por momentos, el método de la máxima verosimilitud y dos aproximaciones Bayesianas. Se estudió el comportamiento de las estimaciones asumiendo tres niveles de dependencia y 20 tamaños de muestra distintos. Para cada método y escenario formado entre el nivel de dependencia y el tamaño de muestra, se desarrolló un estudio de simulación con 1000 repeticiones y el comportamiento de las estimaciones fue evaluado usando cuatro criterios. El estimador obtenido asumiendo una distribución Beta(a; b) para modelar la información previa, presentó el mejor desempeño sin importar el tamaño de muestra y la estructura de dependencia.

    • English

      Abstract In this paper, we developed an empirical evaluation of four estimation procedures for the dependence parameter of the Gumbel-Barnett copula obtained from a Gumbel type I distribution. We used the maximum likelihood, moments and Bayesian methods and studied the performance of the estimates, assuming three dependence levels and 20 different sample sizes. For each method and scenario, a simulation study was conducted with 1000 runs and the quality of the estimator was evaluated using four different criteria. A Bayesian estimator assuming a Beta(a; b) as prior distribution, showed the best performance regardless the sample size and the dependence structure.

  • Referencias bibliográficas
    • Balakrishnan, N.,Lai, C.-D.. (2009). Continuous bivariate distributions. Springer Science & Business Media.
    • Barnett, V.. (1980). Some bivariate uniform distributions. Communications in statistics-theory and methods. 4. 453
    • Barnett, V.. (1983). Reduced distance measures and transformations in processing multivariate outliers. Australian & New Zealand Journal...
    • Efron, B.. (1992). 'Breakthroughs in Statistics'. Springer.
    • Genest, C.,Ghoudi, K.,Rivest, L.-P.. (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions....
    • Genest, C.,Mackay, R. J.. (1986). Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données. Canadian Journal...
    • Gumbel, E. J.. (1960). Bivariate exponential distributions. Journal of the American Statistical Association. 292. 698-707
    • Hoff, P. D.. (2007). Extending the rank likelihood for semiparametric copula estimation. The Annals of Applied Statistics. 1. 265
    • Klein, I.,Christa, F.. (2011). Families of copulas closed under the construction of generalized linear means, Technical report, IWQW discussion...
    • Louie, H.. (2014). Evaluation of bivariate archimedean and elliptical copulas to model wind power dependency structures. Wind Energy. 2. 225
    • Martinez, E. Z.,Achcar, J. A.. (2014). Bayesian bivariate generalized lindley model for survival data with a cure fraction. Computer methods...
    • Menger sen, K. L.,Pudlo, P.,Robert, C. P.. (2013). Bayesian computation via empirical likelihood. Proceedings of the National Academy of Sciences....
    • Min, A.,Czado, C.. (2010). Bayesian inference for multivariate copulas using pair-copula constructions. Journal of Financial Econometrics....
    • Nelsen, R. B.. (2006). An introduction to copulas. Springer Science & Business Media.
    • Oh, D. H.,Patton, A. J.. (2013). Simulated method of moments estimation for copula-based multivariate models. Journal of the American Statistical...
    • Omidi, M.,Mohammadzadeh, M.. (2015). 'A new method to build spatiotemporal covariance functions: analysis of ozone data'. Statistical...
    • Tovar, J.. (2012). 'Eliciting beta prior distributions for binomial sampling'. Revista Brasileira de Zoologia. 30. 159
    • Tovar, J.,Achcar, J.. (2011). 'Indexes to measure dependence between clinical diagnostic tests: A comparative study'. Revista Colombiana...
    • Tovar, J.,Achcar, J.. (2012). 'Two dependent diagnostic tests: Use of copula functions in the estimation of the prevalence and performance...
    • Tovar, J.,Achcar, J.. 'Dependence between two diagnostic tests with copula function approach: a simulation study'. Communications...
    • Weiÿ, G.. (2011). 'Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study'. Computational...
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno