Ir al contenido

Documat


Bayesian Inference for the Segmented Weibull Distribution

  • Autores: Emílio A. Coelho-Barros, Jorge Alberto Achcar, Edson Zangiacomí Martínez, Nasser Davarzani, Heike I. Grabsch
  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 42, Nº. 2, 2019, págs. 225-243
  • Idioma: inglés
  • DOI: 10.15446/rce.v42n2.76815
  • Títulos paralelos:
    • Inferencia bayesiana para distribuciones Weibull segmentadas
  • Enlaces
  • Resumen
    • español

      Resumen En este artículo introducimos un nuevo modelo Bayesiano para distribuciones Weibull segmentadas, que puede ser una buena alternativa en el análisis de datos aplicados a la investigación en salud, con la presencia de censuras y covariables. Con este método basado en la estimación de puntos de cambio, hemos obtenido un excelente ajuste a los datos utilizados como ejemplos. De acuerdo con el modelo propuesto, fue posible identificar rangos de valores en las series temporales en que una variable independiente podría tener diferentes efectos. Este es un resultado importante desde el punto de vista clínico. Los estimados bayesianos fueron obtenidos usando métodos de Monte Carlo en Cadenas de Markov. Ejemplos basados en conjuntos de datos reales fueran usados para ilustrar el uso de los modelos propuestos y sus potenciales aplicaciones en investigaciones clínicas.

    • English

      Abstract In this paper, we introduce a Bayesian approach for segmented Weibull distributions which could be a good alternative to analyze medical survival data in the presence of censored observations and covariates. With the obtained Bayesian estimated change-points we could get an excellent fit of the proposed model to any data sets. With the proposed methodology, it is also possible to identify survival times intervals where a covariate could have significantly different effects when compared to other lifetime intervals, an important point under a clinical view. The obtained Bayesian estimates are obtained using standard Markov Chain Monte Carlo methods. Some examples with real data sets illustrate the proposed methodology and its potential clinical value.

  • Referencias bibliográficas
    • Achcar, J. A.,Bolfarine, H. (1989). ‘Constant hazard against a change-point alternative: a Bayesian approach with censored data’. Communications...
    • Achcar, J. A.,Loibel, S. (1998). ‘Constant hazard function models with a change point: A Bayesian analysis using Markov chain Monte Carlo...
    • Achcar, J. A.,Rodrigues, E. R.,Tzintzun, G. (2011). ‘Modelling interoccurrence times between ozone peaks in Mexico City in the presence of...
    • Achcar, J. A.,Rodrigues, E. R.,Tzintzun, G. (2011). ‘Using non-homogeneous poisson models with multiple change-points to estimate the number...
    • Box, G. E. P.,Tiao, G. C. (1973). Bayesian inference in statistical analysis, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills,...
    • Chen, X.,Baron, M. (2014). ‘Change-point analysis of survival data with application in clinical trials’. Open Journal of Statistics. 4. 663
    • Chib, S.,Greenberg, E. (1995). ‘Understanding the metropolis-hastings algorithm’. The American Statistician. 49. 327
    • Deng, J.-Y.,Liang, H. (2014). ‘Clinical significance of lymph node metastasis in gastric cancer’. World Journal of Gastroenterology. 20. 3967
    • Desmond, R. A.,Weiss, H. L.,Arani, R. B.,Soong, S.-j.,Wood, M. J.,Fiddian, P. A.,Gnann, J. W.,Whitley, R. J. (2002). ‘Clinical applications...
    • Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag. New York.
    • Gelfand, A. E.,Smith, A. F. M,‘Sampling-based, densities’. (1990). Journal of the American Statistical Association. 85. 398-409
    • Goodman, M. S.,Li, Y.,Tiwari, R. C. (2011). ‘Detecting multiple change points in piecewise constant hazard functions’. Journal of applied...
    • Hastings, W. K. (1970). ‘Monte Carlo sampling methods using Markov chains and their applications’. Biometrics. 57. 97-109
    • He, P.,Kong, G.,Su, Z. (2013). ‘Estimating the survival functions for right-censored and interval-censored data with piecewise constant hazard...
    • Hosmer, D. W.,Lemeshow, S.,May, S. (2008). Applied survival analysis: regression modeling of time to event data. Wiley-Interscience.
    • Jandhyala, V.,Fotopoulos, S.,Evaggelopoulos, N. (1999). ‘Change-point methods for Weibull models with applications to detection of trends...
    • Jiwani, S. L. (2005). Parametric changepoint survival model with application to coronary artery bypass graft surgery data. Simon Fraser University....
    • Kaplan, E. L.,Meier, P. (1958). ‘Nonparametric estimation from incomplete observations’. Journal of the American Statistical Association....
    • Karasoy, D. S.,Kadilar, C. (2007). ‘A new Bayes estimate of the change point in the hazard function’. Computational statistics & data...
    • Kizilaslan, F.,Nadar, M. (2015). ‘Classical and Bayesian estimation of reliability in multicomponent stress-strength model based on Weibull...
    • Lawless, J. F. (2003). Statistical models and methods for lifetime data, Wiley Series in Probability and Statistics. John Wiley & Sons,...
    • Loader, C. R. (1991). ‘Inference for a hazard rate change point’. Biometrika. 78. 749
    • Matthews, D. E.,Farewell, V. T. (1982). ‘On testing for a constant hazard against a change-point alternative’. Biometrics. 38. 463
    • Matthews, D.,Farewell, V.,Pyke, R. (1985). ‘Asymptotic score-statistic processes and tests for constant hazard against a change-point alternative’....
    • Müller, H.-G.,Wang, J.-L. (1990). ‘Nonparametric analysis of changes in hazard rates for censored survival data: An alternative to change-point...
    • Naylor, J. C.,Smith, A. F. M. (1982). ‘Applications of a method for the efficient computation of posterior distributions’. Journal of the...
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno