Ir al contenido

Documat


Generation of social network user profiles and their relationship with suicidal behaviour

  • Autores: Jorge Fernández Hernández, Lourdes Araujo Árbol académico, Juan Martínez Romo Árbol académico
  • Localización: Procesamiento del lenguaje natural, ISSN 1135-5948, Nº. 72, 2024, págs. 87-98
  • Idioma: inglés
  • Títulos paralelos:
    • Generación de perfiles de usuarios de redes sociales y su relación con el comportamiento suicida
  • Enlaces
  • Resumen
    • español

      Actualmente el suicidio es una de las principales causas de muerte en el mundo, por lo que poder caracterizar a personas con esta tendencia puede ayudar a prevenir posibles intentos de suicidio. En este trabajo se ha recopilado un corpus, llamado SuicidAttempt en español compuesto por usuarios con o sin menciones explícitas de intentos de suicidio, usando la aplicación de mensajería Telegram. Para cada uno de los usuarios se han anotado distintos rasgos demográficos de manera semi-automática mediante el empleo de distintos sistemas, en unos casos supervisados y en otros no supervisados. Por último se han analizado estos rasgos recogidos, junto con otros lingüísticos extraídos de los mensajes de los usuarios, para intentar caracterizar distintos grupos en base a su relación con el comportamiento suicida. Los resultados sugieren que la detección de estos rasgos demográficos y psicolingüísticos permiten caracterizar determinados grupos de riesgo y conocer en profundidad los perfiles que realizan dichos actos.

    • English

      Suicide is one of the leading causes of death worldwide, so characterising individuals with such tendencies can help prevent suicide attempts. In this study, a corpus, called SuicidAttempt, of Telegram messaging app users, both with and without explicit mentions of suicide attempts, has been compiled in Spanish. For each user, different demographic features were semi-automatically annotated by different systems, some supervised and some unsupervised. Finally, the collected features and linguistic features extracted from users’ messages were analysed to characterise different groups based on their relationship with suicidal behaviour. The results indicate that by detecting these demographic and psycholinguistic features, it is possible to characterise specific at-risk groups and gain detailed insight into the profiles of those who engage in such acts.

  • Referencias bibliográficas
    • Akkaya-Kalayci, T., N. D. Kapusta, D. Winkler, O. D. Kothgassner, C. Popow, and Z. Özlü-Erkilic. 2018. Triggers for attempted suicide in istanbul...
    • Al Maadeed, S. and A. Hassaine. 2014. Automatic prediction of age, gender, and nationality in offline handwriting. EURASIP Journal on Image...
    • Balouchzahi, F., G. Sidorov, and H. L. Shashirekha. 2021. Adop fert-automatic detection of occupations and profession in medical texts using...
    • Bamman, D., J. Eisenstein, and T. Schnoebelen. 2014. Gender identity and lexical variation in social media. Journal of Sociolinguistics, 18(2):135–160.
    • Choudhury, A. P., P. Shivakumara, U. Pal, and C.-L. Liu. 2022. Eau-net: A new edge-attention based u-net for nationality identification. In...
    • Du, X. 2023. Lexical features and psychological states: A quantitative linguistic approach. Journal of Quantitative Linguistics, pages 1–23.
    • Fernandes, A. C., R. Dutta, S. Velupillai, J. Sanyal, R. Stewart, and D. Chandran. 2018. Identifying suicide ideation and suicidal attempts...
    • Fleiss, J. L. 1971. Measuring nominal scale agreement among many raters. Psychological bulletin, 76(5):378.
    • Heidari, M., J. H. Jones, and O. Uzuner. 2020. Deep contextualized word embedding for text-based online user profiling to detect social bots...
    • Lange, L., H. Adel, and J. Strotgen. 2021. Boosting transformers for job expression extraction and classification in a lowresource setting.
    • Lima-López, S., E. Farré-Maduell, A. Miranda-Escalada, V. Brivá-Iglesias, and M. Krallinger. 2021. Nlp applied to occupational health: Meddoprof...
    • Lopez-Castroman, J., B. Moulahi, J. Azé, S. Bringay, J. Deninotti, S. Guillaume, and E. Baca-Garcia. 2020. Mining social networks to improve...
    • Losada, D., F. Crestani, and J. Parapar. 2017. erisk 2017: Clef lab on early risk prediction on the internet: Experimental foundations. pages...
    • Mesa-Murgado, J., P. López-Úbeda, M. C. Díaz-Galiano, M. T. M. Valdivia, and L. A. U. López. 2021. BERT representations to identify professions...
    • Parapar, J., P. Mart´ın-Rodilla, D. E. Losada, and F. Crestani. 2023. erisk 2023: Depression, pathological gambling, and eating disorder challenges....
    • Piot-Perez-Abadin, P., P. Martin-Rodilla, and J. Parapar. 2021. Gender classification models and feature impact for social media author profiling....
    • Pizarro, J. 2019. Using n-grams to detect bots on twitter. In CLEF (Working Notes).
    • Rancans, E., T. Pulmanis, M. Taube, L. Springe, B. Velika, I. Pudule, and D. Grınberga. 2016. Prevalence and sociodemographic characteristics...
    • Rangel, F., F. Celli, P. Rosso, M. Potthast, B. Stein, W. Daelemans, et al. 2015. Overview of the 3rd author profiling task at pan 2015. In...
    • Rangel, F. and P. Rosso. 2019. Overview of the 7th author profiling task at pan 2019: bots and gender profiling in twitter. Working notes...
    • Rangel, F., P. Rosso, I. Chugur, M. Potthast, M. Trenkmann, B. Stein, B. Verhoeven, and W. Daelemans. 2014. Overview of the 2nd author profiling...
    • Rangel, F., P. Rosso, M. Koppel, E. Stamatatos, and G. Inches. 2013. Overview of the author profiling task at pan 2013. In CLEF conference...
    • Rangel, F., P. Rosso, M. Montes-y Gómez, M. Potthast, and B. Stein. 2018. Overview of the 6th author profiling task at pan 2018: multimodal...
    • Rosso, P., F. Rangel, M. Potthast, E. Stamatatos, M. Tschuggnall, and B. Stein. 2016. Overview of pan’16: new challenges for authorship analysis:...
    • Schwartz, H. A., J. C. Eichstaedt, M. L. Kern, L. Dziurzynski, S. M. Ramones, M. Agrawal, A. Shah, M. Kosinski, D. Stillwell, M. E. Seligman,...
    • Wang, Z., S. Hale, D. I. Adelani, P. Grabowicz, T. Hartman, F. Fl¨ock, and D. Jurgens. 2019. Demographic inference and representative population...
    • Yang, Y.-C., M. A. Al-Garadi, J. S. Love, J. Perrone, and A. Sarker. 2021. Automatic gender detection in twitter profiles for health-related...
    • Zirikly, A., P. Resnik, O. Uzuner, and K. Hollingshead. 2019. Clpsych 2019 shared task: Predicting the degree of suicide risk in reddit posts....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno