Ir al contenido

Documat


OntoLM: Integrating Knowledge Bases and Language Models for classification in the medical domain

  • Autores: Fabio Yáñez Romero, Andrés Montoyo Guijarro Árbol académico, Rafael Muñoz Guillena Árbol académico, Yoan Gutiérrez Vázquez Árbol académico, Armando Suárez Cueto Árbol académico
  • Localización: Procesamiento del lenguaje natural, ISSN 1135-5948, Nº. 72, 2024, págs. 137-148
  • Idioma: inglés
  • Títulos paralelos:
    • OntoLM: Integrando bases de conocimiento y modelos de lenguaje para clasificación en dominio medico
  • Enlaces
  • Resumen
    • español

      Los grandes modelos de lenguaje han mostrado un rendimiento impresionante en tareas de Procesamiento del Lenguaje Natural, pero su condición de caja negra hace difícil explicar las decisiones del modelo e integrar conocimiento semántico. Existe un interés creciente en combinar fuentes de conocimiento externas con LLMs para solventar estos inconvenientes. En este articulo, proponemos OntoLM, una arquitectura novedosa que combina una ontología con un modelo de lenguaje pre-entrenado para clasificar entidades biomédicas en texto. El enfoque propuesto consiste en construir y procesar grafos provenientes de una ontología utilizando una red neuronal de grafos para contextualizar cada entidad. A continuación, combinamos los resultados del modelo de lenguaje y la red neuronal de grafos en un clasificador final. Los resultados muestran que OntoLM mejora la clasificación de entidades en textos médicos utilizando un conjunto de categorías obtenidas de Unified Medical Language System. Utilizando grafos de ontologías y redes neuronales de grafos podemos crear arquitecturas de procesamiento de lenguaje natural más rastreables.

    • English

      Large language models have shown impressive performance in Natural Language Processing tasks, but their black box characteristics render the explainability of the model’s decision difficult to achieve and the integration of semantic knowledge. There has been a growing interest in combining external knowledge sources with language models to address these drawbacks. This paper, OntoLM, proposes a novel architecture combining an ontology with a pre-trained language model to classify biomedical entities in text. This approach involves constructing and processing graphs from ontologies and then using a graph neural network to contextualize each entity. Next, the language model and the graph neural network output are combined into a final classifier. Results show that OntoLM improves the classification of entities in medical texts using a set of categories obtained from the Unified Medical Language System. We can create more traceable natural language processing architectures using ontology graphs and graph neural networks.

  • Referencias bibliográficas
    • Agarwal, C., O. Queen, H. Lakkaraju, and M. Zitnik. 2023. Evaluating explainability for graph neural networks.
    • AlKhamissi, B., M. Li, A. Celikyilmaz, M. Diab, and M. Ghazvininejad. 2022. A review on language models as knowledge bases.
    • Bender, E. M., T. Gebru, A. McMillan-Major, and S. Shmitchell. 2021. On the dangers of stochastic parrots: Can language models be too big?...
    • Bodenreider, O. 2004. The unified medical language system (umls): integrating biomedical terminology. Nucleic acids research, 32(suppl 1):D267–D270.
    • Chen, H., X. Liu, D. Yin, and J. Tang. 2017. A survey on dialogue systems: Recent advances and new frontiers. SIGKDD Explor. Newsl., 19(2):25–35,...
    • Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding....
    • Elazar, Y., N. Kassner, S. Ravfogel, A. Ravichander, E. Hovy, H. Schütze, and Y. Goldberg. 2021. Measuring and improving consistency in pretrained...
    • Fellbaum, C., editor. 1998. WordNet: An Electronic Lexical Database. Language, Speech, and Communication. MIT Press, Cambridge, MA.
    • Feng, Y., X. Chen, B. Y. Lin, P.Wang, J. Yan, and X. Ren. 2020. Scalable multi-hop relational reasoning for knowledge-aware question answering....
    • Gehman, S., S. Gururangan, M. Sap, Y. Choi, and N. A. Smith. 2020. RealToxicityPrompts: Evaluating neural toxic degeneration in language models....
    • Gu, Y., R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Naumann, J. Gao, and H. Poon. 2021. Domain-specific language model pretraining...
    • Gérardin, C., P. Wajsbürt, P. Vaillant, A. Bellamine, F. Carrat, and X. Tannier. 2022. Multilabel classification of medical concepts for patient...
    • He, H., H. Zhang, and D. Roth. 2022. Rethinking with retrieval: Faithful large language model inference.
    • Huang, N., Y. R. Deshpande, Y. Liu, H. Alberts, K. Cho, C. Vania, and I. Calixto. 2022. Endowing language models with multimodal knowledge...
    • Hüllermeier, E., M. Wever, E. L. Mencia, J. F¨urnkranz, and M. Rapp. 2020. A flexible class of dependence-aware multi-label loss functions.
    • Jiang, X., Y. Shen, Y. Wang, X. Jin, and X. Cheng. 2020. Bakgrastec: A background knowledge graph based method for short text classification....
    • Kaur, J., S. Bhatia, M. Aggarwal, R. Bansal, and B. Krishnamurthy. 2022. LM-CORE: Language models with contextually relevant external knowledge....
    • Lee, E., C. Lee, and S. Ahn. 2022. Comparative study of multiclass text classification in research proposals using pretrained language models....
    • Li, Y., D. Tarlow, M. Brockschmidt, and R. Zemel. 2017. Gated graph sequence neural networks.
    • Liu, F., E. Shareghi, Z. Meng, M. Basaldella, and N. Collier. 2021. Self-alignment pretraining for biomedical entity representations.
    • McCray, A. 1989. The umls semantic network.
    • Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013. Efficient estimation of word representations in vector space. Mrksic, N., D. Ó Séaghdha,...
    • Neumann, M., D. King, I. Beltagy, and W. Ammar. 2019. ScispaCy: Fast and robust models for biomedical natural language processing. In D. Demner-Fushman,...
    • Peng, B., M. Galley, P. He, H. Cheng, Y. Xie, Y. Hu, Q. Huang, L. Liden, Z. Yu, W. Chen, and J. Gao. 2023. Check your facts and try again:...
    • Piad-Morffis, A., R. Muñoz, Y. Gutiérrez, Y. Almeida-Cruz, S. Estevez-Velarde, and A. Montoyo. 2019. A neural network component for knowledge-based...
    • Su, J., M. Zhu, A. Murtadha, S. Pan, B. Wen, and Y. Liu. 2022. Zlpr: A novel loss for multi-label classification. Sun, J., C. Xu, L. Tang,...
    • Sun, Y., S. Wang, S. Feng, S. Ding, C. Pang, J. Shang, J. Liu, X. Chen, Y. Zhao, Y. Lu, W. Liu, Z. Wu, W. Gong, J. Liang, Z. Shang, P. Sun,...
    • Wang, L., W. Zhao, Z. Wei, and J. Liu. 2022. Simkgc: Simple contrastive knowledge graph completion with pre-trained language models.
    • Wang, X., Q. He, J. Liang, and Y. Xiao. 2023. Language models as knowledge embeddings.
    • Yasunaga, M., H. Ren, A. Bosselut, P. Liang, and J. Leskovec. 2021. QA-GNN: Reasoning with language models and knowledge graphs for question...
    • Ying, Z., D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. 2019. Gnnexplainer: Generating explanations for graph neural networks. In H. Wallach,...
    • Yáñez Romero, F., A. Montoyo, R. Muñoz, Y. Gutiérrez, and A. Suárez Cueto. 2023-09. A review in knowledge extraction from knowledge bases.
    • Zhang, Z., X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu. 2019. ERNIE: Enhanced language representation with informative entities. In A. Korhonen,...
    • Zhou, J., G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. 2020. Graph neural networks: A review of methods and applications....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno