Ir al contenido

Documat


Some Families of Pencils with a Unique Base Point and Their Associated Foliations

  • Claudia R. Alcántara [1] ; Alexis G. Zamora [2]
    1. [1] Universidad de Guanajuato

      Universidad de Guanajuato

      México

    2. [2] U. A. Matemáticas
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01070-4
  • Enlaces
  • Resumen
    • We construct families of pencils in P2 with a unique base point such that the associated foliations have a unique singular point. The families give counterexamples to the Poincaré Problem in the sense that for a given degree of the foliations, the degree of the pencils and their genus arbitrarily increases. The generic element of each family of pencils turns out to be isotrivial. We study other related topics, such as the instability of the pencils and the associated foliations. Finally, we prove the rationality of the variety defined by these families of pencils.

  • Referencias bibliográficas
    • 1. Alcántara, C.R.: Singular points and automorphisms of unstable foliations of CP2. Bol. Soc. Mat. Mexicana3 16(1), 39–51 (2010)
    • 2. Barth, Wolf P., Hulek, Kaus Chris Peters, A.M., Van de Ven, A.: Compact complex surfaces, vol. 4 of Ergebnisse der Mathematik und ihrer...
    • 3. Beauville, A.: Le nombre minimum de fibres singulières d’une courbe stable sur P1. Astérisque, 86:97–108, (1981). Seminar on pencils of...
    • 4. Beauville, A.: Complex algebraic surfaces, vol. 34 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge,...
    • 5. Brunella, M.: Birational geometry of foliations. Publicações Matemáticas do IMPA. [IMPA Mathematical Publications]. Instituto de Matemática...
    • 6. Carnicer, M.: The poincaré problem in the nondicritical case. Annals Math. 140, 289–294 (1994)
    • 7. Dominique Cerveau and Alcides Lins Neto: Holomorphic foliations in CP2 having an invariant algebraic curve. Ann. Inst. Fourier (Grenoble)...
    • 8. Galindo, C., Monserrat, F.: The Poincaré problem, algebraic integrability and dicritical divisors. J. Diff. Equ. 256(11), 3614–3633 (2014)
    • 9. Gómez-Mont, Xavier, Kempf, George: Stability of meromorphic vector fields in projective spaces. Comment. Math. Helv. 64(3), 462–473 (1989)
    • 10. Gómez-Mont, Xavier, Ortíz-Bobadilla, Laura: Sistemas dinámicos holomorfos en superficies. Aportaciones Matemáticas: Notas de Investigación...
    • 11. Hartshorne, Robin: Algebraic Geometry, volume 52 of Graduate Texts in Mathematics. Springer, (1977)
    • 12. Jean Pierre Jouanolou: Équations de Pfaff algébriques. Lecture Notes in Mathematics, vol. 708. Springer, Berlin (1979)
    • 13. Lins Neto, Alcides: Some examples for the Poincaré and Painlevé problems. Ann. Sci. École Norm. Sup. (4), 35(2):231–266, 2002
    • 14. Miranda, Rick: On the stability of pencils of cubic curves. Amer. J. Math. 102(6), 1177–1202 (1980)
    • 15. Mumford, David, Fogarty, John, Kirwan, Frances:Geometric invariant theory, volume 34 ofErgebnisse der Mathematik und ihrer Grenzgebiete...
    • 16. Pereira, Jorge V.: On the poincaré problem for foliations of general type. Math. Ann. 12(5), 688–693 (2002)
    • 17. Poincaré, Henri: Sur l’intégration algébrique des équations différentielles du primer ordre. Rendiconti del Circolo Matematico di Palermo...
    • 18. Liliana Puchuri Medina: Degree of the first integral of a pencil in P2 defined by Lins Neto. Publ. Mat. 57(1), 123–137 (2013)
    • 19. Serrano, Fernando: Isotrivial fibred surfaces. Ann. Mat. Pura Appl. 4(171), 63–81 (1996)
    • 20. Soares, Marcio: The poincaré problem for hypersurfaces invariant by one-dimensional foliations. Invent. Math. 128, 495–500 (1997)
    • 21. Zamora, Alexis G.: Foliations in algebraic surfaces having a rational first integral. Publicacions Matemàtiques 41, 357–373 (1997)
    • 22. Zanardini, Aline: A note on the stability of pencils of plane curves. Math. Z. 300(2), 1741–1751 (2022)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno