Ir al contenido

Documat


A Study on Linear Prabhakar Fractional Systems with Variable Coefficients

  • Mustafa Aydin [1] ; N. I. Mahmudov [2]
    1. [1] Van Yuzuncu Yil University
    2. [2] Eastern Mediterranean University, Azerbaijan State University of Economics (UNEC)
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01065-1
  • Enlaces
  • Resumen
    • The focus of this paper is on addressing the initial value problem related to linear systems of fractional differential equations characterized by variable coefficients, incorporating Prabhakar fractional derivatives of Riemann–Liouville and Caputo types. Utilizing the generalized Peano–Baker series technique, the state-transition matrix is acquired. The paper presents closed form solutions for both homogeneous and inhomogeneous cases, substantiated by illustrative examples.

  • Referencias bibliográficas
    • 1. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods...
    • 2. Podlubny, I.: What Euler could further write, or the unnoticed “big bang” of the fractional calculus. Fract. Calc. Appl. Anal. 16, 501–506...
    • 3. Li, Y., Chen, Y., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler...
    • 4. Magin, R., Ortigueira, M.D., Podlubny, I., Trujillo, J.: On the fractional signals and systems. Signal Process. 91, 350–371 (2011)
    • 5. Luchko, Y.: Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351, 218–223 (2009)
    • 6. Datsko, B., Gafiychuk, V.: Complex spatio-temporal solutions in fractional reaction-diffusion systems near a bifurcation point. Fract....
    • 7. Datsko, B., Podlubny, I., Povstenko, Y.: Time-fractional diffusion-wave equation with mass absorption in a sphere under harmonic impact....
    • 8. Chu, Y.M., Sultana, S., Karim, S., Rashid, S., Alharthi, M.S.: A new scheme of the ARA transform for solving fractional-order waves-like...
    • 9. Chu, Y.M., Alzahrani, T., ur Rashid, S., Rashidah,W., Rehman, S., Alkhatib, M.: An advanced approach for the electrical responses of discrete...
    • 10. Rashid, S., Karim, S., Akgül, A., Bariq, A., Elagan, S.K.: Novel insights for a nonlinear deterministicstochastic class of fractional-order...
    • 11. Chu, Y.M., Rashid, S., Karim, S., Khalid, A., Elagan, S.K.: Deterministic-stochastic analysis of fractional differential equations malnutrition...
    • 12. Gafel, H.S., Rashid, S.: Enhanced evolutionary approach for solving fractional difference recurrent neural network systems: a comprehensive...
    • 13. Atangana, A., Rashid, S.: Analysis of a deterministic-stochastic oncolytic M1 model involving immune response via crossover behaviour:...
    • 14. Chikrii, A., Eidelman, S.: Generalized Mittag-Leffler matrix functions in game problems for evolutionary equations of fractional order....
    • 15. Chikrii, A., Matichin, I.: Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann–Liouville,...
    • 16. Matychyn, I., Onyshchenko, V.: Time-optimal control of fractional-order linear systems. Fract. Calc. Appl. Anal. 18, 687–696 (2015)
    • 17. Matychyn, I., Onyshchenko, V.: Optimal control of linear systems with fractional derivatives. Fract. Calc. Appl. Anal. 21, 134–150 (2018)
    • 18. Matychyn, I., Onyshchenko, V.: On time-optimal control of fractional-order systems. J. Comput. Appl. Math. 339, 245–257 (2018)
    • 19. Matychyn, I., Onyshchenko, V.: Optimal control of linear systems of arbitrary fractional order. Fract. Calc. Appl. Anal. 22, 170–179 (2019)
    • 20. Eckert, M., Nagatou, K., Rey, F., Stark, O., Hohmann, S.: Solution of time-variant fractional differential equations with a generalized...
    • 21. Lorenzo, C.F., Hartley, T.T.: Initialized fractional calculus. Int. J. Appl. Math. 3, 249–265 (2000)
    • 22. Baake, M., Schlägel, U.: The Peano–Baker series. Proc. Steklov Inst. Math. 275, 155–159 (2011)
    • 23. Matychyn, I.: Analytical solution of linear fractional systems with variable coefficients involving Riemann–Liouville and Caputo derivatives....
    • 24. Matignon, D., Andrea-Novel, B.: Some results on controllability and observability of finite-dimensional fractional differential systems....
    • 25. Mozyrska, D., Torres, D.F.M.: Modified optimal energy and initial memory of fractional continuoustime linear systems. Signal Process....
    • 26. Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems. Wiley, New York (1972)
    • 27. Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)
    • 28. Kilbas, A.A., Saigo, M., Saxena, R.K.: Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transform....
    • 29. Garra, R., Gorenflo, R., Polito, F., Tomovski, Z.: Hilfer-Prabhakar derivatives and some applications. Appl. Math. Comput. 242, 576–589...
    • 30. Fernandez, A., Baleanu, D.: Classes of operators in fractional calculus: a case study. Math. Methods Appl. Sci. 44(11), 9143–9162 (2021)
    • 31. Giusti, A., Colombaro, I., Garra, R., Garrappa, R., Polito, F., Popolizio, M., Mainardi, F.: A practical guide to Prabhakar fractional...
    • 32. Rani, N., Fernandez, A.: Solving Prabhakar differential equations using Mikusi ´nski’s operational calculus. Comput. Appl. Math. 41, 107...
    • 33. Namarneh, T.E., Al-Refai, M.: Analytical study to systems of fractional differential equations with Prabhakar derivative. In: 12th Conference...
    • 34. Garrappa, R., Maione, G.: Fractional Prabhakar derivative and applications in anomalous dielectrics: a numerical approach. In: Babiarz,...
    • 35. Tomovski, Z., Dubbeldam, J.L.A., Korbel, J.: Applications of Hilfer-Prabhakar operator to option pricing financial model. Fract. Calc....
    • 36. Giusti, A., Colombaro, I.: Prabhakar-like fractional viscoelasticity. Commun. Nonlinear Sci. Numer. Simul. 56, 138–143 (2018)
    • 37. Gross, B.: Electrical analogs for viscoelastic systems. J. Polym. Sci. 20(95), 371–380 (1956)
    • 38. Gross, B.: Ladder structures for representation of viscoelastic systems. J. Polym. Sci. 20(94), 123–131 (1956)
    • 39. Gross, B., Fuoss, R.M.: Ladder structures for representation of viscoelastic systems. J. Polym. Sci. 19(91), 39–50 (1956)
    • 40. Giusti, A., Mainardi, F.: On infinite series concerning zeros of Bessel functions of the first kind. Eur. Phys. J. Plus 131(6), 1–7 (2016)
    • 41. Abdeljawad, T.: Fractional operators with generalized Mittag-Leffler kernels and their iterated differintegrals. Chaos Interdiscip. J....
    • 42. Fernandez, A., Abdeljawad, T., Baleanu, D.: Relations between fractional models with three-parameter Mittag-Leffler kernels. Adv. Differ....
    • 43. Fernandez, A., Baleanu, D., Srivastava, H.M.: Series representations for fractional-calculus operators involving generalised Mittag-Leffler...
    • 44. Fernandez, A., Restrepo, J.E., Suragan, D.: Prabhakar-type linear differential equations with variable coefficients. Differ. Integral...
    • 45. Jothimani, K., Valliammal, N., Alsaeed, S., Kottakkaran Nisar, S., Ravichandran, C.: Controllability results of Hilfer fractional derivative...
    • 46. Vijayaraj, V., Ravichandran, C., Kottakkaran Nisar, S., Valliammal, N., Logeswari, K., Albalawi, W., Abdel-Aty, A.: An outlook on the...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno