Ir al contenido

Documat


Initial Value and Terminal Value Problems for Distributed Order Fractional Diffusion Equations

  • Li Peng [1] ; Yong Zhou [2]
    1. [1] Xiangtan University

      Xiangtan University

      China

    2. [2] Macau University of Science and Technology

      Macau University of Science and Technology

      RAE de Macao (China)

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01061-5
  • Enlaces
  • Resumen
    • In this work, we introduce and study two problems for diffusion equations with the distributed order fractional derivatives including the initial value problem and the terminal value problem. For the initial value problem, we establish some existence results and Hölder regularity for the mild solution. On the other hand, we also show the existence results and a decay estimate of the mild solution for the terminal value problems. Especially, the polynomial decay of the solutions to the terminal value problems is firstly included when the source function is equal to zero.

  • Referencias bibliográficas
    • 1. Cao, Y., Yin, J.X., Wang, C.P.: Cauchy problems of semilinear pseudo-parabolic equations. J. Differ. Equ. 246, 4568–4590 (2009)
    • 2. Carracedo, C.M., Alix, M.S.: The Theory of Fractional Powers of Operators. North-Holland Mathematics Studies, vol. 187. Elsevier, Amsterdam...
    • 3. Floridia, G., Li, Z., Yamamoto, M.: Well-posedness for the backward problems in time for general time-fractional diffusion equation. Atti...
    • 4. Floridia, G., Yamamoto, M.: Backward problems in time for fractional diffusion-wave equation. Inverse Problems 36(12), 125016 (2020)
    • 5. Kemppainen, J., Siljander, J., Vergara, V., Zacher, R.: Decay estimates for time-fractional and other non-local in time subdiffusion equations...
    • 6. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics...
    • 7. Kim, I., Kim, K.H., Lim, S.: An Lq (L p)-theory for the time fractional evolution equations with variable coefficients. Adv. Math. 306,...
    • 8. Kian, Y., Yamamoto, M.: Well-posedness for weak and strong solutions of non-homogeneous initial boundary value problems for fractional...
    • 9. Kochubei, A.N.: Distributed order calculus and equation of ultraslow diffusion. J. Math. Anal. Appl. 340(1), 252–281 (2008)
    • 10. Kubica, A., Yamamoto, M.: Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients. Fract....
    • 11. Kubica, A., Ryszewska, K.: Fractional diffusion equation with distributed-order Caputo derivative. J. Integr. Equ. Appl. 31(2), 195–243...
    • 12. Li, C.P., Cai, M.: Theory and Numerical Approximations of Fractional Integrals and Derivatives. Society for Industrial and Applied Mathematics...
    • 13. Li, Z., Kian, Y., Soccorsi, E.: Initial-boundary value problem for distributed order time-fractional diffusion equations. Asymptot. Anal....
    • 14. Li, L., Liu, J.G., Wang, L.: Cauchy problems for Keller–Segel type time-space fractional diffusion equation. J. Differ. Equ. 265(3), 1044–1096...
    • 15. Lian, W., Wang, J., Xu, R.: Global existence and blow up of solutions for pseudo-parabolic equation with singular potential. J. Differ....
    • 16. Meerschaert, M.M., Scheffler, H.P.: Stochastic model for ultraslow diffusion. Stoch. Proc. Appl. 116, 1215–1235 (2006)
    • 17. Ngoc, T.B., Kian, Y., Tuan, N.H., Regan, D.: Existence and uniqueness of mild solutions for a final value problem for nonlinear fractional...
    • 18. Pandir, Y., Ekin, A.: New solitary wave solutions of the Korteweg-de Vries (KdV) equation by new version of the trial equation method....
    • 19. Pandir, Y., Yasmin, H.: Optical soliton solutions of the generalized sine-Gordon equation. Electron. J. Appl. Math. 1(2), 71–86 (2023)
    • 20. Peng, L., Zhou, Y., He, J.W.: The well-posedness analysis of distributed order fractional diffusion problems on RN . Monatsh. Math. 198,...
    • 21. Peng, L., Zhou, Y.: The analysis of approximate controllability for distributed order fractional diffusion problems. Appl. Math. Opt....
    • 22. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse...
    • 23. Sun, C.L., Liu, J.J.: An inverse source problem for distributed order time-fractional diffusion equation. Inverse Problems 36(5), 055008...
    • 24. Thi, D.X.T., Thi, T.H.V.: Recovering solution of the reverse nonlinear time fractional diffusion equations with fluctuations data. Electron....
    • 25. Tran, D.K., Lam, T.P.T.: Nonlocal final value problem governed by semilinear anomalous diffusion equations. Evolut. Equ. Control Theory...
    • 26. Truong, T.N.: Classification of blow-up and global existence of solutions to a system of Petrovsky equations. Electron. J. Appl. Math....
    • 27. Tuan, N.H., Huynh, L.N., Ngoc, T.B., Zhou, Y.: On a backward problem for nonlinear fractional diffusion equations. Appl. Math. Lett. 92,...
    • 28. Tuan, N.H., Nguyen, A.T., Can, N.H.: Existence and continuity results for Kirchhoff parabolic equation with Caputo–Fabrizio operator....
    • 29. Tuan, N.H., Nguyen, V.T., O’Regan, D., Can, N.H., Nguyen, V.T.: New results on continuity by order of derivative for conformable parabolic...
    • 30. Wang, R., Can, N.H., Nguyen, A.T., Tuan, N.H.: Local and global existence of solutions to a timefractional wave equation with an exponential...
    • 31. Zhou, Y., He, J.W., Ahmad, B., Tuan, N.H.: Existence and regularity results of a backward problem for fractional diffusion equations....
    • 32. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno