Ir al contenido

Documat


Hospitalization forecast to inform COVID-19 pandemic planning and resource allocation using discrete event simulation

  • Wikman-Jorgensen, Philip Erick [4] ; Ruiz, Angel [1] ; Giner-Galvañ, Vicente [4] ; Llenas-García, Jara [2] ; Seguí-Ripoll, José Miguel [5] ; Salinas Serrano, Jose María [6] ; Borrajo, Emilio [7] ; Ibarra Sánchez, José María [8] ; García-Sabater, José P. [3] Árbol académico ; Marin-Garcia, Juan A. [3]
    1. [1] Laval University

      Laval University

      Canadá

    2. [2] Hospital Universitario San Juan de Alicante

      Hospital Universitario San Juan de Alicante

      Alicante, España

    3. [3] Universidad Politécnica de Valencia

      Universidad Politécnica de Valencia

      Valencia, España

    4. [4] Internal Medicine Department, Hospital Universitario San Juan de Alicante-FISABIO
    5. [5] Internal Medicine Department, Hospital Universitario San Juan de Alicante-FISABIO (Spain) Clinical Medicine Department, Universidad Miguel Hernández de Elche (Spain)
    6. [6] IT Department - Hospital San Juan de Alicante
    7. [7] Microbiology Department, Hospital Vega Baja-FISABIO, Orihuela
    8. [8] Documentation and Admission Department, Hospital Vega Baja-FISABIO, Orihuela
  • Localización: Journal of Industrial Engineering and Management, ISSN-e 2013-0953, Vol. 17, Nº. 1, 2024, págs. 168-181
  • Idioma: inglés
  • DOI: 10.3926/jiem.6404
  • Enlaces
  • Resumen
    • Purpose: This study aims to address the pressing need for accurate forecasting of healthcare resource demands during the COVID-19 pandemic. It presents a novel approach that combines a stochastic Markov model and a discrete event simulation model to dynamically predict hospital admissions and daily occupancy of hospital and ICU beds.Design/methodology/approach: The research builds upon existing work related to predicting COVID-19 spread and patient influx to hospital emergency departments. The proposed model was developed and validated at San Juan de Alicante University Hospital from July 10, 2020, to January 10, 2022, and externally validated at Hospital Vega Baja. The model involves an admissions generator based on a stochastic Markov model, feeding data into a discrete event simulation model in the R programming language. The probabilities of hospital admission were calculated based on age-stratified positive SARS-COV-2 results from the health department's catchment population. The discrete event simulation model simulates distinct patient pathways within the hospital to estimate bed occupancy for the upcoming week. The performance of the model was measured using the median absolute difference (MAD) between predicted and actual demand.Findings: When applied to data from San Juan hospital, the admissions generator demonstrated a MAD of 6 admissions/week (interquartile range [IQR] 2-11). The MAD between the model's predictions and actual bed occupancy was 20 beds/day (IQR 5-43), equivalent to 5% of total hospital beds. For ICU occupancy, the MAD was 4 beds/day (IQR 2-7), constituting 25% of ICU beds. Evaluation with data from Hospital Vega Baja showcased an admissions generator MAD of 2.42 admissions/week (IQR 1.02-7.41). The MAD between the model's predictions and actual bed occupancy was 18 beds/day (IQR 19.57-38.89), approximately 5.1% of hospital beds. The ICU occupancy MAD was 3 beds/day (IQR 1-5), making up 21.4% of ICU beds.Practical implications: The dynamic predictions of hospital admissions, ward beds, and ICU occupancy for COVID-19 patients proved highly valuable to hospital managers, facilitating early and informed planning of resource allocation. Additionally, this study underscores the importance of utilizing simulation techniques to predict and manage hospital occupancy levels, thereby enhancing decision-making in hospital bed management, not only during pandemics but also during regular periods.Originality/value: This study introduces a novel hybrid approach that combines stochastic modeling and discrete event simulation to forecast healthcare resource demands during the COVID-19 pandemic. The methodology's effectiveness in predicting admissions and bed occupancy contributes to improved resource planning and situational awareness.

  • Referencias bibliográficas
    • Ahmad, N., Ghani, N.A., Kamil, A.A., & Tahar, R.M. (2014). Managing Resource Capacity Using Hybrid Simulation. In 3rd International Conference...
    • Amdaoud, M., Arcuri, G., & Levratto, N. (2021). Are regions equal in adversity? A spatial analysis of spread and dynamics of COVID-19...
    • Baas, S., Dijkstra, S., Braaksma, A., van Rooij, P., Snijders, F.J., Tiemessen, L. et al. (2021). Real-time forecasting of COVID-19 bed occupancy...
    • Bartsch, S.M., Ferguson, M.C., McKinnell, J.A., O'Shea, K.J., Wedlock, P.T., Siegmund, S.S. et al. (2020). The Potential Health Care Costs...
    • Berenguer, J., Borobia, A.M., Ryan, P., Rodríguez-Baño, J., Bellón, J.M., Jarrín, I. et al. (2021). Development and validation of a prediction...
    • Berenguer, J., Ryan, P., Rodriguez-Bano, J., Jarrin, I., Carratala, J., Pachon, J. et al. (2020). Characteristics and predictors of death...
    • Caro, J., Jörgen, M., Santhirapala, V., Gill, H., Johnston, J., El-Boghdadly, K. et al. (2021). Predicting Hospital Resource Use During COVID-19...
    • Clissold, A., Filar, J., Qin, S., & Ward, D. (2015). Markov Decision Process Model for Optimisation of Patient Flow. In 21st International...
    • Collie, S., Champion, J., Moultrie, H., Bekker, L.G., & Gray, G. (2022). Effectiveness of BNT162b2 Vaccine against Omicron Variant in...
    • Condes, E., & Arribas, J.R. (2021). Impact of COVID-19 on Madrid hospital system. Enfermedades Infecciosas y Microbiologia Clinica, 39(5),...
    • Davahli, M.R., Karwowski, W., Fiok, K., Murata, A., Sapkota, N., Farahani, F.V. et al. (2022). The COVID-19 Infection Diffusion in the US...
    • Davies, N.G., Kucharski, A.J., Eggo, R.M., Gimma, A., Edmunds, W.J., Jombart, T. et al. (2020). Effects of non-pharmaceutical interventions...
    • Emanuel, E.J., Persad, G., Upshur, R., Thome, B., Parker, M., Glickman, A. et al. (2020). Fair Allocation of Scarce Medical Resources in the...
    • Ferguson, N.M., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M. et al. (2020). Estimating the effects of non-pharmaceutical...
    • Flaxman, S., Mishra, S., Gandy, A., Unwin, H.J.T., Mellan, T.A., Coupland, H. et al. (2020). Estimating the effects of non-pharmaceutical...
    • Fuente, D., Hervas, D., Rebollo, M., Conejero, J.A., & Oliver, N. (2022). COVID-19 outbreaks analysis in the Valencian Region of Spain...
    • Garcia-Vicuna, D., Esparza, L., & Mallor, F. (2020). Safely learning Intensive Care Unit management by using a Management Flight Simulator....
    • Garcia-Vicuna, D., Esparza, L., & Mallor, F. (2022). Hospital preparedness during epidemics using simulation: The case of COVID-19. Central...
    • Goic, M., Bozanic-Leal, M.S., Badal, M., & Basso, L.J. (2021). COVID-19: Short-term forecast of ICU beds in times of crisis. PLOS ONE,...
    • Griffin, K.M., Karas, M.G., Ivascu, N.S., & Lief, L. (2020). Hospital preparedness for COVID-19: A practical guide from a critical care...
    • Hajlasz, M., & Mielczarek, B. (2020). Simulation modelling for predicting hospital admissions and bed utilisation. Operations Research...
    • He, L., Madathil, S.C., Oberoi, A., Servis, G., & Khasawneh, M.T. (2019). A systematic review of research design and modeling techniques...
    • Helbig, K., Stoeck, T., & Mellouli, T. (2015). A Generic Simulation-based DSS for Evaluating Flexible Ward Clusters in Hospital Occupancy...
    • Holm, L.B., Luras, H., & Dahl, F.A. (2013). Improving hospital bed utilisation through simulation and optimisation With application to...
    • Keeling, M.J., Hill, E.M., Gorsich, E.E., Penman, B., Guyver-Fletcher, G., Holmes, A. et al. (2020). Predictions of COVID-19 dynamics in the...
    • Khanna, S., Sier, D., Boyle, J., & Zeitz, K. (2016). Discharge timeliness and its impact on hospital crowding and emergency department...
    • Lai, J., Ma, S., Wang, Y., Cai, Z., Hu, J., Wei, N. et al. (2020). Factors associated with mental health outcomes among health care workers...
    • Landa, P., Sonnessa, M., Resta, M., Tanfani, E., & Testi, A. (2017). A Hybrid Simulation Approach to Analyse Patient Boarding in Emergency...
    • Le Lay, J., Augusto, V., Xie, X.L., Alfonso-Lizarazo, E., Bongue, B., Celarier, T. et al. (2020). Impact of Covid-19 epidemics on bed requirements...
    • Leveau, C.M., Aouissi, H.A., & Kebaili, F.K. (2023). Spatial diffusion of COVID-19 in Algeria during the third wave. Geojournal, 88(1),...
    • Li, X.Z., Jin, F., Zhang, J.G., Deng, Y.F., Shu, W., Qin, J.M. et al. (2020). Treatment of coronavirus disease 2019 in Shandong, China: A...
    • Lozano, M.A., Orts, Ò.G., Piñol, E., Rebollo, M., Polotskaya, K., Garcia-March, M.A. et al. (2021). Open Data Science to Fight COVID-19: Winning...
    • Mallor, F., & Azcarate, C. (2014). Combining optimization with simulation to obtain credible models for intensive care units. Annals of...
    • Marin-Garcia, J.A. (2021). Publishing in three stages to support evidence based management practice. WPOMWorking Papers on Operations Management,...
    • Marin-Garcia, J.A., Garcia-Sabater, J.P., Ruiz, A., Maheut, J., & Garcia-Sabater, J.J. (2020). Operations Management at the service of...
    • Marin-Garcia, J.A., Ruiz, A., Julien, M., & Garcia-Sabater, J.P. (2021). A data generator for covid-19 patients’ care requirements inside...
    • Mas-Romero, M., Avendaño-Céspedes, A., Tabernero-Sahuquillo, M.T., Cortés-Zamora, E.B., Gómez-Ballesteros, C., Alfaro, V.S.F. et al. (2020)....
    • Monks, T., Worthington, D., Allen, M., Pitt, M., Stein, K., & James, M.A. (2016). A modelling tool for capacity planning in acute and...
    • Nguyen, H.M., Turk, P.J., & McWilliams, A.D. (2021). Forecasting COVID-19 Hospital Census: A Multivariate Time-Series Model Based on Local...
    • Oksuz, E., Malhan, S., Gonen, M.S., Kutlubay, Z., & Keskindemirci, Y. (2021). COVID-19 healthcare cost and length of hospital stay in...
    • Oliveira, M., Bélanger, V., Marques, I., & Ruiz, A. (2020). Assessing the impact of patient prioritization on operating room schedules....
    • Olivieri, A., Palù, G., & Sebastiani, G. (2021). COVID-19 cumulative incidence, intensive care, and mortality in Italian regions compared...
    • Olshen, A.B., Garcia, A., Kapphahn, K.I., Weng, Y., Wesson, P.D., Rutherford, G.W. et al. (2021). COVIDNearTerm: A Simple Method to Forecast...
    • Otterstrom, S.M., & Hochberg, L. (2021). Relative Concentrations and Diffusion of COVID-19 across the United States in 2020. Cartographica,...
    • Qian, Z., Alaa, A.M., & van der Schaar, M. (2021). CPAS: the UK’s national machine learning-based hospital capacity planning system for...
    • Qin, S.W., Thompson, C., Bogomolov, T., Ward, D., & Hakendorf, P. (2017). Hospital occupancy and discharge strategies: a simulation-based...
    • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
    • Redondo, E., Nicoletta, V., Bélanger, V., Garcia-Sabater, J.P., Landa, P., Maheut, J. et al. (2023). A simulation model for predicting hospital...
    • Saez, C., Romero, N., Conejero, J.A., & Garcia-Gomez, J.M. (2021). Potential limitations in COVID-19 machine learning due to data source...
    • Seymour, C.W., Alotaik, O., Wallace, D.J., Elhabashy, A.E., Chhatwal, J., Rea, T.D. et al. (2015). County-Level Effects of Prehospital Regionalization...
    • Ucar, I., Smeets, B., & Azcorra, A. (2019). Simmer: Discrete-event simulation for R. Journal of Statistical Software, 90(2). https://doi.org/10.18637/jss.v090.i02
    • Varney, J., Bean, N., & Mackay, M. (2019). The self-regulating nature of occupancy in ICUs: stochastic homoeostasis. Health Care Management...
    • Verity, R., Okell, L.C., Dorigatti, I., Winskill, P., Whittaker, C., Imai, N. et al. (2020). Estimates of the severity of coronavirus disease...
    • Vernaz, N., Agoritsas, T., Calmy, A., Gayet-Ageron, A., Gold, G., Perrier, A. et al. (2020). Early experimental COVID-19 therapies: associations...
    • Wikman-Jorgensen, P.E., Ruiz, A., Giner-Galvañ, V., Llenas-García, J., Seguí-Ripoll, J.M., Salinas-Serrano, J.M. et al. (2022). Hospitalization...
    • World Health Organization (2020). Coronavirus disease (COVID-19) pandemic. Available at: https://www.who.int/europe/emergencies/situations/covid-19
    • Xiang, Y., Jia, Y., Chen, L., Guo, L., Shu, B., & Long, E. (2021). COVID-19 epidemic prediction and the impact of public health interventions:...
    • Zheng, T.L., Zhang, C.L., Shi, Y.T., Chen, D.B., & Liu, S. (2022). Influencing Factors and Clustering Characteristics of COVID-19: A Global...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno