Ir al contenido

Documat


Extended Lie Method for Mixed Fractional Derivatives, Unconventional Invariants and Reduction, Conservation Laws and Acoustic Waves Propagated via Nonlinear Dispersive Equation

  • Rajesh Kumar Gupta [1] ; Poonam Yadav [1]
    1. [1] Central University of Haryana

      Central University of Haryana

      India

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01064-2
  • Enlaces
  • Resumen
    • This study primarily aims to investigate the application of the Lie symmetry method and conservation law theories in the analysis of mixed fractional partial differential equations where both Riemann–Liouville time-fractional and integer-order x-derivatives are present simultaneously. Specifically, the focus is on the (2+1) dimensional Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equation. The fractionally modified equation is subjected to invariant analysis using the prolongation formula for mixed derivatives ∂α t (ux ) and ∂α t (uxxx ) for the first time. Through the introduction of a novel reduction method, we utilize the Lie symmetry technique to convert the (2+1) dimensional Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equation into a fractional ordinary differential equation. It’s worth noting that this transformation is carried out without employing the Erdélyi–Kober fractional differential operator.

      Following this, we introduce a comprehensive expression for deriving conservation laws, involving the notion of nonlinear self-adjointness. Further, two different versatile techniques, the extended Kudryashov method and the Sardar subequation method have been used to extract a wide array of fresh sets of solitary wave solutions encompassing variations like kink, bright, singular kink, and periodic soliton solutions. To provide an intuitive grasp and investigate the ramifications of the fractional derivative parameter on these solitary wave solutions, we conduct a visual exploration employing both 3D and 2D plots.

  • Referencias bibliográficas
    • 1. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
    • 2. Kilbas, A.A., Srivastava, H.M., Trujilo, J.J.: Theory and Application of Fractional Differential Equation. Elsevier, Amsterdam, The Netherlands...
    • 3. Baleanu, D., Wu, G.C., Zeng, S.D.: Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations. Chaos,...
    • 4. Qazza, A., Saadeh, R.: On the analytical solution of fractional SIR epidemic model. Appl. Comput. Intell. Soft Comput. 2023 (2023)
    • 5. Khater, M.M.: Characterizing shallow water waves in channels with variable width and depth; computational and numerical simulations. Chaos,...
    • 6. Akinyemi, L., Houwe, A., Abbagari, S., Wazwaz, A.M., Alshehri, H.M., Osman, M.S.: Effects of the higher-order dispersion on solitary waves...
    • 7. Baleanu, D., Guvenc, Z.B., Machado, J.A.T.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Berlin, Germany...
    • 8. Saadeh, R., Qazza, A., Amawi, K.: A new approach using integral transform to solve cancer models. Fractal Fract. 6(9), 490 (2022)
    • 9. Sweilam, N.H., Abou Hasan, M.M., Baleanu, D.: New studies for general fractional financial models of awareness and trial advertising decisions....
    • 10. Nasreen, N., Younas, U., Lu, D., Zhang, Z., Rezazadeh, H., Hosseinzadeh, M.A.: Propagation of solitary and periodic waves to conformable...
    • 11. Khater, M.M.: Analyzing pulse behavior in optical fiber: novel solitary wave solutions of the perturbed Chen-Lee-Liu equation. Mod. Phys....
    • 12. Haritos, N.: Introduction to the analysis and design of offshore structures-an overview. Electron. J. Struct. Eng. 1, 55–65 (2007)
    • 13. Pengzhi, L.: Numerical Modeling of Water Waves. Taylor and Francis Group, London and New York (2008)
    • 14. Khater, M.M.: Numerous accurate and stable solitary wave solutions to the generalized modified equal-width equation. Int. J. Theor. Phys....
    • 15. Khater, M.M.: Prorogation of waves in shallow water through unidirectional Dullin-Gottwald-Holm model; computational simulations. Int....
    • 16. Nasreen, N., Lu, D., Zhang, Z., Akgül, A., Younas, U., Nasreen, S., Al-Ahmadi, A.N.: Propagation of optical pulses in fiber optics modelled...
    • 17. Raza, N., Arshed, S.: Chiral bright and dark soliton solutions of Schrödinger’s equation in (1+ 2)- dimensions. Ain Shams Eng. J....
    • 18. Nasreen, N., Younas, U., Sulaiman, T.A., Zhang, Z., Lu, D.: A variety of M-truncated optical solitons to a nonlinear extended classical...
    • 19. Osman, M.S., Ali, K.K.: Optical soliton solutions of perturbing time-fractional nonlinear Schrödinger equations. Optik 209, 164589 (2020)
    • 20. Tang, S., Huang, X., Huang, W.: Bifurcations of travelling wave solutions for the generalized KP-BBM equation. Appl. Math. Comput. 216(10),...
    • 21. Al-Amr, M.O., Rezazadeh, H., Ali, K.K., Korkmazki, A.: N1-soliton solution for Schrödinger equation with competing weakly nonlocal and...
    • 22. Alquran, M., Alhami, R.: Analysis of lumps, single-stripe, breather-wave, and two-wave solutions to the generalized perturbed-KdV equation...
    • 23. Vivas-Cortez, M., Akram, G., Sadaf, M., Arshed, S., Rehan, K., Farooq, K.: Traveling wave behavior of new (2+ 1)-dimensional combined...
    • 24. Almusawa, H., Ali, K.K., Wazwaz, A.M., Mehanna, M.S., Baleanu, D., Osman, M.S.: Protracted study on a real physical phenomenon generated...
    • 25. Sajid, N., Perveen, Z., Sadaf, M., Akram, G., Abbas, M., Abdeljawad, T., Alqudah, M.A.: Implementation of the Exp-function approach for...
    • 26. Alquran, M.: Necessary conditions for convex-periodic, elliptic-periodic, inclined-periodic, and rogue wave-solutions to exist for the...
    • 27. Tanwar, D.V., Wazwaz, A.M.: Lie symmetries, optimal system and dynamics of exact solutions of (2+ 1)-dimensional KP-BBM equation....
    • 28. Yıldırım, Y., Çelik, N., Ya¸sar, E.: Nonlinear Schrödinger equations with spatio-temporal dispersion in Kerr, parabolic, power and dual...
    • 29. Alquran, M.: New interesting optical solutions to the quadratic-cubic Schrodinger equation by using the Kudryashov-expansion method and...
    • 30. Akram, G., Zainab, I., Sadaf, M., Bucur, A.: Solitons, one line rogue wave and breather wave solutions of a new extended KP-equation....
    • 31. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Dokl. Akad. Nauk SSSR 192(4), 753–756...
    • 32. Seadawy, A.R.: Solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili dynamic equation in dust-acoustic plasmas....
    • 33. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond....
    • 34. Wazwaz, A.M.: Exact solutions of compact and non-compact structures for the KP-BBM equation. Appl. Math. Comput. 169(1), 700–712 (2005)
    • 35. Akram, G., Sadaf, M., Perveen, Z., Sarfraz, M., Alsubaie, A.S.A., Inc, M.: Exact travelling wave solutions for generalized (3+ 1)...
    • 36. Chan, C.K., Akram, G., Riaz, M.B., Sadaf, M., Zainab, I., Alzaidi, A.S., Abbas, M.: Abundant soliton solutions of the modified KdV-KP...
    • 37. Song, M., Yang, C., Zhang, B.: Exact solitary wave solutions of the Kadomtsov-Petviashvili-BenjaminBona-Mahony equation. Appl. Math. Comput....
    • 38. Manafian, J., Murad, M.A., Alizadeh, A.A., Jafarmadar, S.: M-lump, interaction between lumps and stripe solitons solutions to the (2+...
    • 39. Guner, O.: Exp-function method and fractional complex transform for space-time fractional KP-BBM equation. Commun. Theor. Phys. 68(2),...
    • 40. Gupta, R.K., Yadav, V.: On weakly nonlinear electron-acoustic waves in the fluid ions, bifurcation analysis, generalized symmetries and...
    • 41. Zhang, Z.Y., Li, G.F.: Invariant analysis and conservation laws of the time-fractional b-family peakon equations. Commun. Nonlinear Sci....
    • 42. Zhu, H.M., Zhang, Z.Y., Zheng, J.: The time-fractional (2+ 1)-dimensional Hirota-Satsuma-Ito equations: Lie symmetries, power series...
    • 43. Zhang, Z.Y., Guo, L.L.: An alternative technique for the symmetry reduction of time-fractional partial differential equation. Math. Methods...
    • 44. Rehman, H.U., Akber, R., Wazwaz, A.M., Alshehri, H.M., Osman, M.S.: Analysis of Brownian motion in stochastic Schrödinger wave equation...
    • 45. Podlubny, I.: Fractional Differential Equations. Academic Press, California (1999)
    • 46. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Langhorne,...
    • 47. Zhang, Z.Y., Zhu, H.M., Zheng, J.: Lie symmetry analysis, power series solutions and conservation laws of the time-fractional breaking...
    • 48. Bluman, G.W., Cheviakov, A.F., Anco, S.C.: Applications of Symmetry Methods to Partial Differential Equations. Springer-Verlag, New York...
    • 49. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)
    • 50. Ibragimov, N.H.: Nonlinear self-adjointness and conservation laws. J. Phys. A: Math. Theor. 44(43), 432002 (2011)
    • 51. Rui, W., Xiangzhi, Z.: Lie symmetries and conservation laws for the time fractional Derrida-LebowitzSpeer- Spohn equation. Commun. Nonlinear...
    • 52. Agrawal, O.P.: Fractional variational calculus and the transversality conditions. J. Phys. A: Math. Gen. 39(33), 10375 (2006)
    • 53. Ibragimov, N.H.: A new conservation theorem. J. Math. Anal. Appl. 333, 311–328 (2007)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno