Ir al contenido

Documat


Global Dynamics Analysis of Non-Local Delayed Reaction-Diffusion Avian Influenza Model with Vaccination and Multiple Transmission Routes in the Spatial Heterogeneous Environment

  • Jiao Li [1] ; Linfei Nie [1]
    1. [1] Xinjiang University

      Xinjiang University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01057-1
  • Enlaces
  • Resumen
    • In order to reveal the transmission dynamics of Avian influenza and explore effective control measures, we develop a non-local delayed reaction-diffusion model of Avian influenza with vaccination and multiple transmission routes in the heterogeneous spatial environment, taking into account the incubation period of Avian influenza in humans and poultry. Firstly, the well-posedness of model is obtained which includes the existence, uniform boundedness and the existence of global attractor. Further, the basic reproduction number R0 of this model is calculated by the definition of the spectral radius of the next generation operator, and its variational form is also derived.

      Further, the global dynamics of the model is established based on the biological significance of R0. To be more precise, if R0 < 1, the disease-free steady state is globally asymptotically stable (i.e., the disease is extinct), while if R0 > 1, the disease is uniformly persistent and model admits at least one endemic steady state. In addition, by constructing suitable Lyapunov functionals, we achieve the global asymptotic stability of the disease-free and endemic steady states of this model in spatially homogeneous.

      Finally, some numerical simulations illustrate the main theoretical results, and discuss the sensitivity of R0 on the model parameters and the influences of non-local delayed and diffusion rates on the transmission of Avian influenza. The theoretical results and numerical simulations show that prolonging the incubation period, controlling the movement of infected poultry, and regular disinfecting the environment are all effective ways to prevent Avian influenza outbreaks.

  • Referencias bibliográficas
    • 1. https://www.chp.gov.hk/files/pdf/2022avianinfluenzareportvol18wk46chi.pdf
    • 2. Iwami, S., Takeuchi, Y., Liu, X.: Avian-human influenza epidemic model. Math. Biosci. 207, 1–25 (2007)
    • 3. Agusto, F., Gumel, A.: Theoretical assessment of avian influenza vaccine. Discret. Cont. Dyn. B 13, 1–25 (2010)
    • 4. Feukouo Fossi, A., Lubuma, J., Tadmon, C., Tsanou, B.: Mathematical modeling and nonstandard finite difference scheme analysis for the...
    • 5. Iwami, S., Takeuchi, Y., Korobeinikov, A., Liu, X.: Prevention of avian influenza epidemic: what policy should we choose? J. Theor. Biol....
    • 6. Iwami, S., Takeuchi, Y., Liu, X., Nakaoka, S.: A geographical spread of vaccine-resistance in avian influenza epidemics. J. Theor. Biol....
    • 7. Chen, Y., Wen, Y.: Global dynamic analysis of a H7N9 avian-human influenza model in an outbreak region. J. Theor. Biol. 367, 180–188 (2015)
    • 8. Liu, Z., Fang, C.: A modeling study of human infections with avian influenza A H7N9 virus in mainland China. Int. J. Infect. Dis. 41, 73–78...
    • 9. Guo, S., Wang, J., Ghost, M., Li, X.: Analysis of avian influenza A (H7N9) model based on the low pathogenicity in poultry. J. Biol. Syst....
    • 10. Yu, X., Ma, Y.: An avian influenza model with nonlinear incidence and recovery rates in deterministic and stochastic environments. Nonlinear...
    • 11. Geng, J., Wang, Y., Liu, Y., Yang, L., Yan, J.: Analysis of an avian influenza model with Allee effect and stochasticity. Int. J. Biomath....
    • 12. Ali, A., Khan, S., Ali, I., Khan, F.: On dynamics of stochastic avian influenza model with asymptomatic carrier using spectral method....
    • 13. Dwivedi, A., Keval, R., Khajanchi, S.: Modeling optimal vaccination strategy for dengue epidemic model: a case study of India. Phys. Scripta...
    • 14. Silver, S., van den Driessche, P., Khajanchi, S.: A dynamic multistate and control model of the COVID19 pandemic. J. Public Health-UK,...
    • 15. Kumar, R., Kumar, T., Khajanchi, S.: Modeling the influence of vaccination coverage on the dynamics of COVID-19 pandemic with the effect...
    • 16. Khajanchi, S., Das, D., Kar, T.: Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation. Phys....
    • 17. Das, D., Khajanchi, S., Kar, T.K.: The impact of the media awareness and optimal strategy on the prevalence of tuberculosis. Appl. Math....
    • 18. Das, D., Khajanchi, S., Kar, T.: Transmission dynamics of tuberculosis with multiple re-infections. Chaos Soliton Fractals 130, 109450...
    • 19. Khajanchi, S., Bera, S., Roy, T.: Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic...
    • 20. Bera, S., Khajanchi, S., Roy, T.: Stability analysis of fuzzy HTLV-I infection model: a dynamic approach. J. Appl. Math. Comput. 69, 171–199...
    • 21. Liu, S., Ruan, S., Zhang, X.: On avian influenza epidemic models with time delay. Theory Biosci. 134, 75–82 (2015)
    • 22. Kang, T., Zhang, Q., Rong, L.: A delayed avian influenza model with avian slaughter: stability analysis and optimal control. Phys. A Stat....
    • 23. Ding, C., Liu, W., Sun, Y., Zhu, Y.: A delayed Schistosomiasis transmission model and its dynamics. Chaos Soliton Fractals 118, 18–34...
    • 24. Song, P., Xiao, Y.: Analysis of an epidemic system with two response delays in media impact function. Bull. Math. Biol. 81, 1–31 (2019)
    • 25. Wang, N., Qi, L., Bessane, M., Hao, M.: Global Hopf bifurcation of a two-delay epidemic model with media coverage and asymptomatic infection....
    • 26. Zhang, Z., Kundu, S., Tripathi, J., Bugalia, S.: Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and...
    • 27. Zheng, T., Nie, L., Teng, Z., Luo, Y.: Competitive exclusion in a multi-strain malaria transmission model with incubation period. Chaos...
    • 28. Zhang, T., Li, Z., Ma, L., Song, X.: Threshold dynamics in a clonorchiasis model with time delays. Appl. Math. Model. 102, 351–370 (2022)
    • 29. Wang, N., Qi, L., Bessane, M., Hao, M.: Global Hopf bifurcation of a two-delay epidemic model with media coverage and asymptomatic infection....
    • 30. Bera, S., Khajanchi, S., Roy, T.: Dynamics of an HTLV-I infection model with delayed CTLs immune response. Appl. Math. Comput. 430, 127206...
    • 31. Allen, L., Bolker, B., Lou, Y., Nevai, A.: Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discret....
    • 32. Cai, Y., Wang, K., Wang, W.: Global transmission dynamics of a Zika virus model. Appl. Math. Lett. 92, 190–195 (2019)
    • 33. Cui, R., Lam, K., Lou, Y.: Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments. J. Differ....
    • 34. Wang, J., Cui, R.: Analysis of a diffusive host-pathogen model with standard incidence and distinct dispersal rates. Adv. Nonlinear Anal....
    • 35. Zhang, C., Gao, J., Sun, H., Wang, J.: Dynamics of a reaction-diffusion SVIR model in a spatial heterogeneous environment. Phys. A Stat....
    • 36. Luo, Y., Tang, S., Teng, Z., Zhang, L.: Global dynamics in a reaction-diffusion multi-group SIR epidemic model with nonlinear incidence....
    • 37. Wu, Y., Zou, X.: Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates. J. Differ. Equ. 264, 4989–5024...
    • 38. Xu, Z., Xu, Y., Huang, Y.: Stability and traveling waves of a vaccination model with nonlinear incidence. Comput. Math. Appl. 75, 561–581...
    • 39. Yang, Y., Zhang, S.: Dynamics of a diffusive vaccination model with nonlinear incidence. Comput. Math. Appl. 75, 4355–4360 (2018)
    • 40. Peng, R.: Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model. J. Differ. Equ. 247, 1096–1119...
    • 41. Yang, Y., Zou, L., Zhou, J., Hsu, C.: Dynamics of a waterborne pathogen model with spatial heterogeneity and general incidence rate. Nonlinear...
    • 42. Zheng, T., Nie, L., Zhu, H., Luo, Y., Teng, Z.: Role of seasonality and spatial heterogeneous in the transmission dynamics of avian influenza....
    • 43. Wang, W., Zhao, X.: A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J. Appl. Math. 71, 147–168 (2011)
    • 44. Xu, Z., Zhao, Y.: A diffusive dengue disease model with nonlocal delayed transmission. Appl. Math. Comput. 270, 808–829 (2015)
    • 45. Ruan, S.: Spatial-temporal dynamics in nonlocal epidemiological models. In: Mathematics for Life Science and Medicine. Springer, Berlin,...
    • 46. Qu, H., Jiang, T., Wang, J., Zhao, J.: Dynamical analysis of a diffusive malaria model with fixed latent period in the human and vector...
    • 47. Lin, H., Wang, F.: On a reaction-diffusion system modeling the dengue transmission with nonlocal infections and crowding effects. Appl....
    • 48. Wu, P., Zhao, H.: Dynamical analysis of a nonlocal delayed and diffusive HIV latent infection model with spatial heterogeneity. J. Franklin...
    • 49. Sun, G., Zhang, H., Chang, L., Jin, Z., Wang, H., Ruan, S.: On the dynamics of a diffusive foot-andmouth disease model with nonlocal infections....
    • 50. Shu, H., Ma, Z., Wang, H.: Diffusive host-pathogen model revisited: Nonlocal infections, incubation period and spatial heterogeneity....
    • 51. Li, F., Zhao, X.: Global dynamics of a nonlocal periodic reaction-diffusion model of bluetongue disease. J. Differ. Equ. 272, 127–163...
    • 52. Zhang, L., Wang, S.: A time-periodic and reaction-diffusion Dengue fever model with extrinsic incubation period and crowding effects....
    • 53. Luo, Y., Teng, Z., Zhao, X.: Transmission dynamics of a general temporal-spatial vector-host epidemic model with an application to the...
    • 54. Metz, J., Diekmann, O.: The dynamics of physiologically structured populations. Springer, New York (1986)
    • 55. Guo, Z., Wang, F., Zou, X.: Threshold dynamics of an infective disease model with a fixed latent period and non-local infections. J. Math....
    • 56. Smith, H.: Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. American Mathematical Society,...
    • 57. Martin, R., Smith, H.: Abstract functional differential equations and reaction-diffusion systems. Trans. Am. Math. Soc. 321, 1–44 (1990)
    • 58. Wu, J.: Theory and applications of partial functional differential equations. Springer, New York (1996)
    • 59. Hale, J.: Asymptotic behavior of dissipative systems. American Mathematical Society, Providence (1988)
    • 60. Gourley, S., Kuang, Y.: A delay reaction-diffusion model of the spread of bacterio-phage infection. SIAM J. Appl. Math. 65, 550–566 (2004)
    • 61. Wang, W., Zhao, X.: A nonlocal and time-delayed reaction-diffusion model of dengue transmission. SIAM J. Appl. Math. 71, 147–168 (2011)
    • 62. Thieme, H.: Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl....
    • 63. Thieme, H., Zhao, X.: A non-local delayed and diffusive predator-prey model. Nonlinear Anal. Real World Appl. 2, 145–160 (2001)
    • 64. Wang, J., Wang, J.: Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population. J. Dyn. Differ....
    • 65. Protter, M., Weinberger, H.: Maximum principles in differential equations. Springer, New York (1984)
    • 66. Thieme, H.: Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol....
    • 67. Smith, H., Zhao, X.: Robust persistence for semidynamical systems. Nonlinear Anal. Theory Methods Appl. 47, 6169–6179 (2001)
    • 68. Magal, P., Zhao, X.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37, 251–275 (2005)
    • 69. Ito´, S.: Diffusion equations, translations of mathematical monographs. AmericanMathematical Society, Providence (1992)
    • 70. Wang, W., Zhao, X.: Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11, 1652–1673 (2012)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno