Ir al contenido

Documat


Estimation of logistic regression parameters for complex survey data: simulation study based on real survey data

  • Amaia Iparragirre [1] ; Irantzu Barrio [1] ; Jorge Aramendi [2] ; Inmaculada Arostegui [1]
    1. [1] Universidad del País Vasco/Euskal Herriko Unibertsitatea

      Universidad del País Vasco/Euskal Herriko Unibertsitatea

      Leioa, España

    2. [2] Instituto Vasco de Estadística
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 48, Nº. 1, 2024, págs. 67-92
  • Idioma: inglés
  • DOI: 10.57645/20.8080.02.14
  • Enlaces
  • Resumen
    • In complex survey data, each sampled observation has assigned a sampling weight, indicating the number of units that it represents in the population. Whether sampling weights should or not be considered in the estimation process of model parameters is a question that still continues to generate much discussion among researchers in different fields. We aim to contribute to this debate by means of a real data based simulation study in the framework of logistic regression models. In order to study their performance, three methods have been considered for estimating the coefficients of the logistic regression model: a) the unweighted model, b) the weighted model, and c) the unweighted mixed model. The results suggest the use of the weighted logistic regression model is superior, showing the importance of using sampling weights in the estimation of the model parameters.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno