Ir al contenido

Documat


Resumen de Convergence Theorems in Multinomial Saturated and Logistic Models

Erick Orozco Acosta, Humberto Jesús Llinás Solano, Javier Fonseca-Rodríguez

  • español

    Resumen En este artículo se desarrolla un estudio teórico de los modelos logísticos y saturados multinomiales cuando la variable de respuesta toma uno de R ≥ 2 niveles. Se presentan y demuestran teoremas sobre la existencia y cálculos de las estimaciones de máxima verosimilitud (ML-estimaciones) de los parámetros de ambos modelos. Se encuentran sus propiedades y, usando teoría asintótica, se prueban teoremas de convergencia para los vectores de puntajes y para las matrices de información. Se presenta y analiza una aplicación de esta teoría con datos tomados de la librería aplore3 del programa R.

  • English

    Abstract In this paper, we develop a theoretical study about the logistic and saturated multinomial models when the response variable takes one of R ≥ 2 levels. Several theorems on the existence and calculations of the maximum likelihood (ML) estimates of the parameters of both models are presented and demonstrated. Furthermore, properties are identified and, based on an asymptotic theory, convergence theorems are tested for score vectors and information matrices of both models. Finally, an application of this theory is presented and assessed using data from the R statistical program.


Fundación Dialnet

Mi Documat