Ir al contenido

Documat


A Method to Select Bivariate Copula Functions

  • Autores: José Rafael Tovar Cuevas, Jennyfer Portilla Yela, Jorge Alberto Achcar
  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 42, Nº. 1, 2019, págs. 61-80
  • Idioma: inglés
  • DOI: 10.15446/rce.v42n1.71780
  • Títulos paralelos:
    • Un método para seleccionar funciones cópula bivariadas
  • Enlaces
  • Resumen
    • español

      Resumen Las funciones de la cópula se han utilizado ampliamente en las estadísticas aplicadas, convirtiéndose en una buena alternativa para modelar la dependencia de los datos multivariados. Cada función de la cópula tiene una estructura de dependencia diferente. Un tema importante en estas aplicaciones es la elección de un modelo de función de cópula apropiado para cada caso en el que los métodos de discriminación clásicos o bayesianos estándar no sean apropiados para decidir por la mejor cópula. Considerando solo el caso especial de datos bivariados, proponemos un procedimiento obtenido a partir de una medida de dependencia recientemente introducida en la literatura para seleccionar una cópula apropiada para los análisis de datos estadísticos.

    • English

      Abstract Copula functions have been extensively used in applied statistics, becoming a good alternative for modeling the dependence of multivariate data. Each copula function has a different dependence structure. An important issue in these applications is the choice of an appropriate copula function model for each case where standard classical or Bayesian discrimination methods could be not appropriate to decide by the best copula. Considering only the special case of bivariate data, we propose a procedure obtained from a recently dependence measure introduced in the literature to select an appropriate copula for the statistical data analyses.

  • Referencias bibliográficas
    • Arbenz, P. (2013). Bayesian copulae distributions, with application to operational risk management-some comments. Methodology and computing...
    • Bairamov, I.,Kotz, S.,Kozubowski, T. (2003). A new measure of linear local dependence. Statistics: A Journal of Theoretical and Applied Statistics....
    • Balakrishnan, N.,Lai, C.-D. (2009). Continuous Bivariate Distributions. Springer. Dordrecht.
    • Barnett, V. (1980). Some bivariate uniform distributions. Communications in statistics-theory and methods. 9. 453
    • Bjerve, S.,Doksum, K. (1993). Correlation curves: measures of association as functions of covariate values. 890-902
    • Chang, K.-L. (2012). The time-varying and asymmetric dependence between crude oil spot and futures markets: Evidence from the mixture copula-based...
    • Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency...
    • Corbella, S.,Stretch, D. D. (2013). Simulating a multivariate sea storm using archimedean copulas. Coastal Engineering. 76. 68-78
    • Deheuvels, P. (1981). An asymptotic decomposition for multivariate distribution free tests of independence. Journal of Multivariate Analysis....
    • Drouet, M.,Kotz, S. (2001). Correlation and dependence. Imperial College Press. London.
    • Durante, F.,Sempi, C. (2015). Principles of copula theory. Chapman and Hall/CRC.
    • Frank, M. J. (1979). On the simultaneous associativity of f(x; y) and x + y - f(x; y). Aequationes Mathematicae. 19. 194-226
    • Genest, C.,Rémillard, B. (2004). Test of independence and randomness based on the empirical copula process. Test. 13. 335
    • Goethals, K.,Janssen, P.,Duchateau, L. (2008). Frailty models and copulas: similarities and di-erences. Journal of Applied Statistics. 35....
    • Gumbel, E. J. (1960). Bivariate exponential distributions. Journal of the American Statistical Association. 55. 698-707
    • Gumbel, E. J. (1960). Distributions des valeurs extremes en plusiers dimensions. Institut de statistique de l'Universite? de Paris. 9....
    • Gumbel, E. J. (1961). Bivariate logistic distributions. Journal of the American Statistical Association. 56. 335
    • Hofert, M. (2008). Sampling archimedean copulas. Computational Statistics & Data Analysis. 52. 5163
    • Hougaard, P. (1986). A class of multivanate failure time distributions. Biometrika. 73. 671
    • Janga Reddy, M.,Ganguli, P. (2012). Risk assessment of hydroclimatic variability on groundwater levels in the manjara basin aquifer in india...
    • Jogdeo, K. (1982). Concepts of dependence. Encyclopedia of statistical sciences. 2. 324
    • Johnson, N.,Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions, Wileg.
    • Kojadinovic, I.,Yan, J.,Holmes, M. (2011). Fast large-sample goodness-of-fit tests for copulas. Statistica Sinica.
    • Kowalczyk, T.,Pleszczynska, E.. (1977). Monotonic dependence functions of bivariate distributions. The Annals of Statistics. 5. 1221
    • Lancaster, H. O. (1982). Dependence, measures and indices. Encyclopedia of statistical sciences. 2. 334
    • Ledwina, T. (2015). Visualizing association structure in bivariate copulas using new dependence function, in 'Stochastic Models, Statistics...
    • Lojowska, A.,Kurowicka, D.,Papaefthymiou, G.,van der Sluis, L.. (2012). Stochastic modeling of power demand due to evs using copula. IEEE...
    • Meintanis, S. G. (2007). Test of -t for marshallolkin distributions with applications. Journal of Statistical Planning and inference. 137....
    • Nelsen, R. B. (2006). An introduction to copulas. Springer.
    • Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges. Institut de statistique de l'Universite? de Paris. 8. 229
    • Topçu, Ç. (2016). Comparison of some selection criteria for selecting bivariate archimedean copulas. Afyon Kocatepe University Journal of...
    • Tovar, J. R.,Achcar, J. A. (2012). Two dependent diagnostic tests: Use of copula functions in the estimation of the prevalence and performance...
    • Tovar, J. R.,Achcar, J. A. (2013). Dependence between two diagnostic tests with copula function approach: a simulation study. Communications...
    • Wang, Y.-C.,Wu, J.-L.,Lai, Y.-H. (2013). A revisit to the dependence structure between the stock and foreign exchange markets: A dependence-switching...
    • Weiss, G. (2011). Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study. Computational Statistics....
    • Xie, K.,Li, Y.,Li, W. (2012). Modelling wind speed dependence in system reliability assessment using copulas. IET Renewable Power Generation....
    • Zhang, Q.,Xiao, M.,Singh, V. P.,Chen, X. (2013). Copula-based risk evaluation of droughts across the pearl river basin, china. Theoretical...
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno