Ir al contenido

Documat


A Birnbaum-Saunders Model for Joint Survival and Longitudinal Analysis of Congestive Heart Failure Data

  • Autores: Diana Franco Soto, Antonio Carlos Pedroso de Lima, J. M. Singer
  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 43, Nº. 1, 2020, págs. 83-101
  • Idioma: inglés
  • DOI: 10.15446/rce.v43n1.77851
  • Títulos paralelos:
    • Un modelo Birnbaum-Saunders para el análisis conjunto de datos de supervivencia y longitudinales de insuficiencia cardíaca congestive
  • Enlaces
  • Resumen
    • español

      Resumen Consideramos una modelación conjunta paramétrica de mediciones longitudinales y tiempos de supervivencia, motivados por un estudio realizado en el Instituto do Coração (Incor), São Paulo, Brasil, con el objetivo de evaluar el impacto del Péptido Natriurético tipo B (BNP) recolectado en diferentes instantes, sobre la supervivencia de pacientes con Insuficiencia Cardíaca Congestiva (ICC). Empleamos un modelo lineal de efectos mixtos para la respuesta longitudinal y un modelo Birnbaum-Saunders para los tiempos de supervivencia, permitiendo la inclusión de sujetos sin observaciones longitudinales. Obtenemos los estimadores de máxima verosimilitud de los parámetros del modelo conjunto y realizamos un estudio de simulación para comparar las probabilidades de supervivencia verdaderas con las predicciones dinámicas obtenidas al ajustar el modelo conjunto propuesto y para evaluar el desempeño del método para estimar los parámetros del modelo. El modelo conjunto propuesto se aplica a la cohorte de 1609 pacientes con ICC, de los cuales 1080 no tienen mediciones de BNP. Las estimaciones de los parámetros y sus errores estándar obtenidos por medio de: i) el enfoque tradicional, donde únicamente se incluyen individuos con al menos una medición de la respuesta longitudinal y ii) el enfoque propuesto, que incluye la información de supervivencia de todos los individuos; se comparan con los obtenidos por medio de los modelos marginales (longitudinal y de supervivencia).

    • English

      Abstract We consider a parametric joint modelling of longitudinal measurements and survival times, motivated by a study conducted at the Heart Institute (Incor), São Paulo, Brazil, with the objective of evaluating the impact of B-type Natriuretic Peptide (BNP) collected at different instants on the survival of patients with Congestive Heart Failure (CHF). We employ a linear mixed model for the longitudinal response and a Birnbaum-Saunders model for the survival times, allowing the inclusion of subjects without longitudinal observations. We derive maximum likelihood estimators of the joint model parameters and conduct a simulation study to compare the true survival probabilities with dynamic predictions obtained from the fit of the proposed joint model and to evaluate the performance of the method for estimating the model parameters. The proposed joint model is applied to the cohort of 1609 patients with CHF, of which 1080 have no BNP measurements. The parameter estimates and their standard errors obtained via: i) the traditional approach, where only individuals with at least one measurement of the longitudinal response are included and ii) the proposed approach, which includes survival information from all individuals, are compared with those obtained via marginal (longitudinal and survival) models.

  • Referencias bibliográficas
    • Albert, P. S.,Shih, J. H. (2010). On estimating the relationship between longitudinal measurements and time-to-event data using a simple two-stage...
    • Balakrishnan, N.,Leiva, V.,Sanhueza, A.,Vilca, F. (2009). Estimation in the Birnbaum-Saunders distribution based on scale-mixture of normals...
    • Barros, M.,Paula, G. A.,Leiva, V. (2008). A new class of survival regression models with heavy-tailed errors: robustness and diagnostics....
    • Crowther, M. J.,Abrams, K. R.,Lambert, P. C. (2012). Flexible parametric joint modelling of longitudinal and survival data. Statistics in...
    • DeGruttola, V.,Tu, X. M. (1994). Modelling progression of CD-4 lymphocyte count and its relationship to survival time. Biometrics. 50. 1003
    • Diggle, P.,Farewell, D.,Henderson, R. (2007). Analysis of longitudinal data with drop-out: objectives, assumptions and a proposal. Journal...
    • Diggle, P. J.,Sousa, I.,Chetwynd, A. G. (2008). Joint modelling of repeated measurements and time-to-event outcomes: the fourth armitage lecture....
    • Franco-Soto, D. C. (2014). Modelos Birnbaum-Saunders para sobrevivência com dados longitudinais. Departamento de Estatística, Instituto de...
    • Galea, M.,Leiva, V.,Paula, G. (2004). Influence diagnostics in log-Birnbaum-Saunders regression models. Journal Applied Statistics. 31. 1049
    • Gay, D. M. (1990). Usage summary for selected optimization routines. Computing science technical report. 153. 1-21
    • Gould, A. L.,Boye, M. E.,Crowther, M. J.,Ibrahim, J. G.,Quartey, G.,Micallef, S.,Bois, F. Y. (2015). Joint modeling of survival and longitudinal...
    • Greene, W. F.,Cai, J. (2004). Measurement error in covariates in the marginal hazards model for multivariate failure time data. Biometrics....
    • Henderson, R.,Diggle, P.,Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics. 1. 465
    • Hogan, J. W.,Laird, N. M. (1997). Mixture models for the joint distributions of repeated measures and event times. Statistics in Medicine....
    • Hogan, J. W.,Laird, N. M. (1997). Statistics in Medicine. 16. 259
    • Hsieh, F.,Tseng, Y. K.,Wang, J. L. (2006). Joint modelling of survival and longitudinal data: likelihood approach revisited. Biometrics. 62....
    • Hu, P.,Tsiatis, A. A.,Davidian, M. (1998). Estimating the parameters in the Cox model when covariate variables are measured with error. Biometrics....
    • Kalbfleisch, J. D.,Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data. 2. John Wiley & Sons. New Jersey.
    • Klein, J. P.,Moeschberger, M. L. (2003). Survival Analysis: Techniques for Censored and Truncated Data. 2. Springer-Verlag. New York.
    • Leiva, V.,Athayde, E.,Azevedo, C.,Marchant, C. (2011). Modelling wind energy flux by a Birnbaum-Saunders distribution with unknown shift parameter....
    • Leiva, V.,Barros, M. K.,Paula, G. A.,Galea, M. (2007). Influence diagnostics in log-Birnbaum-Saunders regression models with censored data....
    • Pawitan, Y.,Self, S. (1993). Modelling disease marker processes in AIDS. Journal of the American Statistical Association. 83. 719
    • (2013). R Development Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria....
    • Rizopoulos, D. (2010). JM: An R package for the joint modelling of longitudinal and time-to-event data. Journal of Statistical Software. 35....
    • Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics. 67....
    • Rizopoulos, D. (2012). JM: Shared parameter models for the joint modelling of longitudinal and time-to-event data.
    • Rizopoulos, D. (2016). Joint Models for Longitudinal and Time-to-Event Data With Applications in R. 1. Chapman-Hall/CRC Biostatistics Series....
    • Rizopoulos, D.,Verbeke, G.,Lesaffre, E. (2009). Fully exponential Laplace approximations for the joint modelling of survival and longitudinal...
    • Rizopoulos, D.,Verbeke, G.,Molenberghs, G. (2010). Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal...
    • Schluchter, M. D. (1992). Methods for the analysis of informatively censored longitudinal data. Statistics in Medicine. 11. 1861
    • Tsiatis, A. A.,Davidian, M. (2004). Joint modelling of longitudinal and time-to-event data: an overview. Statistica Sinica. 14. 809
    • Tsiatis, A. A.,DeGruttola, V.,Wulfsohn, M. S. (1995). Modelling the relationship of survival to longitudinal data measured with error: applications...
    • Wu, L.,Liu, W.,Yi, G. Y.,Huang, Y. (2012). Analysis of longitudinal and survival data: joint modeling, inference methods, and issues. Journal...
    • Wulfsohn, M. S.,Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics. 53. 330
    • Ye, W.,Lin, X.,Taylor, J. M. G. (2008). Semiparametric modeling of longitudinal measurements and time-to-event data: a two-stage regression...
    • Yu, M.,Law, N. J.,Taylor, J. M. G.,Sandler, H. M. (2004). Joint longitudinal-survival-cure models and their application to prostate cancer....
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno