Ir al contenido

Documat


Spatial MCUSUM Control Chart

  • Autores: Juan David Rojas Gordillo, Rubén Darío Guevara Gonzalez
  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 43, Nº. 1, 2020, págs. 49-70
  • Idioma: inglés
  • DOI: 10.15446/rce.v43n1.78748
  • Títulos paralelos:
    • Carta de control MCUSUM espacial
  • Enlaces
  • Resumen
    • español

      Resumen Este documento propone una carta de control CUSUM multivariada espacial para monitorear la media de una sola característica de un producto o proceso, cuando las mediciones se toman en diferentes ubicaciones en cada elemento muestreado. Para estimar la matriz de varianza y covarianza, se utilizan algunas herramientas de la geoestadística, teniendo en cuenta la correlación espacial entre las mediciones. El desempeño de esta carta de control se explora por simulación y su uso se ilustra con un ejemplo.

    • English

      Abstract This paper proposes a spatial multivariate CUSUM control chart in order to monitor the mean of a single characteristic of a product or process, when the measurements are taken in different locations on each sampled item. To estimate the variance and covariance matrix some tools from the geostatistics are used, taking into account the spatial correlation between the measurements. The performance of this control chart is explored by simulation and its use is illustrated with an example.

  • Referencias bibliográficas
    • Alt, F. B.,Smith, N. D. (1988). 'Multivariate process control'. Handbook of statistics. 7. 333
    • Barndorff-Nielsen, O. (1978). 'Hyperbolic distributions and distributions on hyperbolae'. Scandinavian Journal of statistics. 151
    • Bersimis, S.,Sgora, A.,Psarakis, S. (2018). The application of multivariate statistical process monitoring in non-industrial processes. Quality...
    • Bogaert, P.,Russo, D. (1999). Optimal spatial sampling design for the estimation of the variogram based on a least squares approach. Water...
    • Cabaña, E. M. (1987). Affine processes: a test of isotropy based on level sets. SIAM Journal on Applied Mathematics. 47. 886
    • Capizzi, G. (2015). Recent advances in process monitoring: Nonparametric and variable-selection methods for phase i and phase ii. Quality...
    • Chakraborti, S.,Human, S.,Graham, M. (2008). Phase i statistical process control charts: an overview and some results. Quality Engineering....
    • Colosimo, B. M.,Cicorella, P.,Pacella, M.,Blaco, M. (2014). From profile to surface monitoring: Spc for cylindrical surfaces via gaussian...
    • Cressie, N. (2015). Statistics for spatial data. John Wiley & Sons.
    • Crosier, R. B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technometrics. 30. 291-303
    • Di Bernardino, E.,Estrade, A.,León, J. R.. (2017). A test of gaussian-ity based on the euler characteristic of excursion sets. Electronic...
    • Frey, R. (2010). Encyclopedia of Quantitative Finance. Wiley Online Library.
    • Fuentes, M. (2005). A formal test for nonstationarity of spatial stochastic processes. Journal of Multivariate Analysis. 96. 30-54
    • Garthoff, R.,Otto, P. (2015). Stochastic Models, Statistics and Their Applications. Springer.
    • Grimshaw, S. D.,Blades, N. J.,Miles, M. P. (2013). Spatial control charts for the mean. Journal of Quality Technology. 45. 130
    • Haining, R. (2003). Spatial data analysis: theory and practice. Cambridge university press.
    • Hohn, M. (1998). Geostatistics and petroleum geology. Springer Science & Business Media.
    • Hotteling, H. (1947). Multivariate quality control, illustrated by the air testing of sample bombsights. Techniques of statistical analysis....
    • Jones-Farmer, L. A.,Woodall, W. H.,Steiner, S. H.,Champ, C. W. (2014). An overview of phase i analysis for process improvement and monitoring....
    • Kang, L.,Albin, S. L. (2000). On-line monitoring when the process yields a linear profile. Journal of Quality Technology. 32. 418
    • Khoo, M. B.,Wu, Z.,Castagliola, P.,Lee, H. (2013). A multivariate synthetic double sampling T2 control chart. Computers & industrial engineering....
    • Lee, M. H.,Khoo, M. B.,Xie, M. (2014). An optimal control procedure based on multivariate synthetic cumulative sum. Quality and Reliability...
    • Lowry, C. A.,Woodall, W. H.,Champ, C. W.,Rigdon, S. E. (1992). A multi-variate exponentially weighted moving average control chart. Technometrics....
    • Maity, A.,Sherman, M. (2012). Testing for spatial isotropy under general designs. Journal of statistical planning and inference. 142. 1081
    • Marchant, B.,Lark, R. (2007). Optimized sample schemes for geostatistical surveys. Mathematical Geology. 39. 113
    • Montgomery, D. C. (2019). Introduction to statistical quality control. John Wiley & Son.
    • Müller, W. G.,Zimmerman, D. L. (1999). Optimal designs for variogram estimation. Environmetrics: The official journal of the International...
    • Nadarajah, S.,Kotz, S. (2005). Mathematical properties of the multivariate t distribution. Acta Applicandae Mathematica. 89. 53-84
    • Nezhad, M. S. F.,Niaki, S. T. A. (2013). A max-ewma approach to monitor and diagnose faults of multivariate quality control processes. The...
    • Noorossana, R.,Saghaei, A.,Amiri, A. (2011). Statistical Analysis of Profile Monitoring. John Wiley & Sons. Hoboken, New Jersey.
    • Peres, F. A. P.,Fogliatto, F. S. (2018). Variable selection methods in multivari-ate statistical process control: A systematic literature...
    • Pignatiello Jr, J. J.,Runger, G. C. (1990). Comparisons of multivariate cusum charts. Journal of Quality Technology. 22. 173
    • Qiu, P. (2008). Distribution-free multivariate process control based on log-linear modeling. IIE Transactions. 40. 664
    • Qiu, P. (2013). Introduction to statistical process control. CRC Press.
    • Ribeiro Jr., P. J.,Diggle, P. J. (2001). geoR: a package for geostatistical analysis. R-NEWS. 1. 15
    • Ryan, T. P. (2011). Statistical methods for quality improvement. John Wiley & Sons.
    • Schabenberger, O.,Gotway, C. A. (2017). Statistical methods for spatial data analysis. CRC press.
    • Schabenberger, O.,Pierce, F. J. (2001). Contemporary statistical models for the plant and soil sciences. CRC press.
    • Sonesson, C.,Bock, D. (2003). A review and discussion of prospective statistical surveillance in public health. Journal of the Royal Statistical...
    • Suriano, S.,Wang, H.,Shao, C.,Hu, S. J.,Sekhar, P. (2015). rogressive measurement and monitoring for multi-resolution data in surface manufacturing...
    • Tobler, W. R. (1970). A computer movie simulating urban growth in the detroit region. Economic geography. 46. 234
    • Tsui, K.-L.,Chiu, W.,Gierlich, P.,Goldsman, D.,Liu, X.,Maschek, T. (2008). A review of healthcare, public health, and syndromic surveillance....
    • Unkel, S.,Farrington, C. P.,Garthwaite, P. H.,Robertson, C.,Andrews, N. (2012). Statistical methods for the prospective detection of infectious...
    • Waller, L. A.,Gotway, C. A. (2004). Applied spatial statistics for public health data. John Wiley & Sons.
    • Wang, A.,Wang, K.,Tsung, F. (2014). Statistical surface monitoring by spatial-structure modeling. Journal of Quality Technology. 46. 359
    • Wang, K.,Jiang, W.,Li, B. (2016). A spatial variable selection method for monitoring product surface. International Journal of Production...
    • Weller, Z. D.,Hoeting, J. A. (2020). A nonparametric spectral domain test of spatial isotropy. Journal of statistical planning and inference....
    • Williams, J. D.,Woodall, W. H.,Birch, J. B. (2007). Statistical monitoring of nonlinear product and process quality profiles. Quality and...
    • Woodall, W. H. (2006). The use of control charts in health-care and public-health surveillance. Journal of Quality Technology. 38. 89-104
    • Woodall, W. H. (2007). Current research in profile monitoring. Producao. 17. 420
    • Woodall, W. H.,Montgomery, D. C. (2014). Some current directions in the theory and application of statistical process monitoring. Journal...
    • Woodall, W. H.,Spitzner, D. J.,Montgomery, D. C.,Gupta, S. (2004). Using control charts to monitor process and product quality profiles. Journal...
    • Yuan, J. (2000). Testing gaussianity and linearity for random fields in the frequency domain. Journal of Time Series Analysis. 21. 723
    • Zhang, S.,Liu, Y.,Jung, U. (2019). Sparse abnormality detection based on variable selection for spatially correlated multivariate process....
    • Zimmerman, D. L.,Buckland, S. T. (2019). Handbook of Environmental and Ecological Statistics. CRC Press.
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno