Ir al contenido

Documat


Relationship Between Kendall's tau Correlation and Mutual Information

  • Autores: Mohammad Bolbolian Ghalibaf
  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 43, Nº. 1, 2020, págs. 3-20
  • Idioma: inglés
  • DOI: 10.15446/rce.v43n1.78054
  • Títulos paralelos:
    • Relación entre la correlación tau de Kendall e información mutua
  • Enlaces
  • Resumen
    • español

      Resumen La información mutua (MI) puede ser vista como una medida de asociación multivariante en un vector aleatorio. Sin embargo, la estimación de MI es difícil ya que la estimación de la función de densidad de probabilidad conjunta (PDF) de datos distribuidos no gaussianos es un problema difícil. La función copula es una herramienta apropiada para estimar el MI ya que la función de densidad de probabilidad de las variables aleatorias se puede expresar como el producto de la función de densidad de cópula asociada y de los PDF marginales. Con una pequeña búsqueda, encontramos que la información mutua propuesta basada en cópulas es mucho más precisa que los métodos convencionales, como el histograma de la articulación y el MI basado en ventana de Parzen. En este artículo, al utilizar el método basado en cópulas, calculamos el MI para algunas familias de funciones de distribución bivariadas y estudiamos la relación entre la correlación tau de Kendall y el MI de las distribuciones bivariadas. Finalmente, usando un conjunto de datos real, ilustramos la eficiencia de este enfoque.

    • English

      Abstract Mutual information (MI) can be viewed as a measure of multivariate association in a random vector. However, the estimation of MI is difficult since the estimation of the joint probability density function (PDF) of non-Gaussian distributed data is a hard problem. Copula function is an appropriate tool for estimating MI since the joint probability density function of random variables can be expressed as the product of the associated copula density function and marginal PDF's. With a little search, we find that the proposed copulas-based mutual information is much more accurate than conventional methods such as the joint histogram and Parzen window-based MI. In this paper, by using the copulas-based method, we compute MI for some family of bivariate distribution functions and study the relationship between Kendall's tau correlation and MI of bivariate distributions. Finally, using a real dataset, we illustrate the efficiency of this approach.

  • Referencias bibliográficas
    • Arellano-Valle, R. B.,Contreras-Reyes, J. E.,Genton, M. G. (2013). 'Shannon Entropy and Mutual Information for Multivariate Skew-Elliptical...
    • Bell, C. B. (1962). 'Mutual information and maximal correlation as measures of dependence'. The Annals of Mathematical Statistics....
    • Blumentritt, T.,Schmid, F. (2012). 'Mutual information as a measure of multi-variate association: analytical properties and statistical...
    • Calsaverini, R. S.,Vicente, R. (2009). 'An information-theoretic approach to statistical dependence: Copula information'. EPL (Europhysics...
    • Clayton, D. G. (1978). 'A model for association in bivariate life tables and its application in epidemiological studies of familial tendency...
    • Cook, R. D.,Johnson, M. E. (1981). 'A family of distributions for modeling non-elliptically symmetric multivariate data'. Journal...
    • Cuadras, C. M.,Auge, J. (1981). 'A continuous general multivariate distribution and its properties'. Communications in Statistics-Theory...
    • Dobrowolski, E.,Kumar, P. (2014). 'Some properties of the Marshall-Olkin and generalized Cuadras-Auge families of copulas'. Australian...
    • Fang, H. B.,Fang, K. T.,Kotz, S. (2002). 'The meta-elliptical distributions with given marginals'. Journal of Multivariate Analysis....
    • Frank, M. J. (1979). 'On the simultaneous associativity of F(x,y) and x + y - F(x,y)'. Aequationes Mathematicae. 99. 194-226
    • Genest, C. (1987). 'Frank s family of bivariate distributions. Biometrika. 74. 145
    • Genest, C.,MacKay, R. J. (1986). 'Copules archimediennes et families de lois bidimensionnelles dont les marges sont données'. Canadian...
    • Genest, C.,MacKay, R. J. (1986). 'The joy of copulas: bivariate distributions with uniform marginals. The American Statistician. 40. 280
    • Genest, C.,Remillard, B.,Beaudoin, D. (2009). 'Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and...
    • Guerrero-Cusumano, J. L. (1996). 'A measure of total variability for the multivariate t distribution with applications to finance'....
    • Guerrero-Cusumano, J. L. (1996). 'An asymptotic test of independence for multivariate t and Cauchy random variables with applications....
    • Gumbel, E. J. (1960). 'Distributions des valeurs extrêmes en plusieurs dimensions'. Publications de l'Institut de statistique...
    • Hougaard, P. (1986). 'A class of multivanate failure time distributions'. Biometrika. 73. 671
    • Hutchinson, T. P.,Lai, C. D. (1990). Continuous bivariate distributions emphasising applications. Rumsby Scientific Publishing. Adelaide.
    • Jenison, R. L.,Reale, R. A. (2004). 'The shape of neural dependence'. Neural computation. 16. 665
    • Joe, H. (1989). 'Relative entropy measures of multivariate dependence. Journal of the American Statistical Association. 84. 157
    • Kendall, M. G. (1938). 'A new measure of rank correlation. Biometrika. 30. 81-93
    • Kinney, J. B.,Atwal, G. S. (2014). 'Equitability, mutual information, and the maximal information coefficient'. National Academy of...
    • Kullback, S. (1952). 'An application of information theory to multivariate analysis. The Annals of Mathematical Statistics. 23. 88-102
    • Kullback, S. (1959). Information Theory and Statistics. Wiley. New York.
    • Kumar, P. (2012). 'Statistical Dependence: Copula functions and mutual information based measures'. Journal of Statistics Applications...
    • Kwak, N.,Choi, C. H. (2002). 'Input feature selection by mutual information based on Parzen window'. IEEE Transactions on Pattern...
    • Maes, F.,Collignon, A.,Vandermeulen, D.,Marchal, G.,Suetens, P. (1997). 'Multimodality image registration by maximization of mutual information....
    • Mercier, G. (2005). Mesures de dépendance entre images rso.
    • Meyer, C. (2013). 'The bivariate normal copula. Communications in Statistics-Theory and Methods. 42. 2402
    • Nelsen, R. B. (1986). 'Properties of a one-parameter family of bivariate distributions with specified marginals'. Communications in...
    • Nelsen, R. B. (2006). An Introduction to Copulas. Springer. New York.
    • Oakes, D. (1982). A model for association in bivariate survival data,. Journal of the Royal Statistical Society. 44. 414
    • (2012). R Development Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria....
    • Raftery, A. E. (1984). A continuous multivariate exponential distribution,. Communications in Statistics-Theory and Methods. 13. 947
    • Raftery, A. E. (1985). Some properties of a new continuous bivariate exponential distribution. Statistics and Decisions, Supplement Issue....
    • Shannon, C.,Weaver, W. (1949). The Mathematical Theory of Communication. University of Illinois Press, Urbana.
    • Sklar, A. (1959). 'Fonctions de répartition à n dimensions et leurs marges'. Publications de l'Institut de statistique de l'Université...
    • Zeng, X.,Durrani, T. S. (2011). Estimation of mutual information using copula density function. Electronics Letters. 47. 493
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno