Ir al contenido

Documat


Nonparametric Prediction for Spatial Dependent Functional Data Under Fixed Sampling Design

  • Autores: Mamadou Ndiaye, Sophie Dabo-Niang, Papa Ngom
  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 45, Nº. 2, 2022, págs. 391-428
  • Idioma: inglés
  • DOI: 10.15446/rce.v45n2.98957
  • Títulos paralelos:
    • Predicción no paramétrica para datos funcionales dependientes del espacio bajo un diseño de muestreo fijo
  • Enlaces
  • Resumen
    • español

      Resumen En este trabajo consideramos una predicción no paramétrica de un proceso espacial y funcional observado bajo un diseño de muestreo no aleatorio. El predictor propuesto se basa en la regresión funcional y depende de dos núcleos, uno de los cuales controla la estructura espacial y el otro mide la proximidad entre las observaciones funcionales. Esta metodología puede considerarse, en particular, como una nueva herramienta de clasificación supervisada cuando la variable de interés pertenece a un conjunto finito discreto predefinido. El error cuadrático medio y la convergencia casi completa (o certera) se obtienen cuando la muestra considerada es una a realizado estudios numéricos para ilustrar el comportamiento de nuestro predictor. Esta aplicación mediante simulación de un modelo numérico muestra que el método de predicción propuesto supera al predictor clásico que no tiene en cuenta la estructura espacial.

    • English

      Abstract In this work, we consider a nonparametric prediction of a spatio-functional process observed under a non-random sampling design. The proposed predictor is based on functional regression and depends on two kernels, one of which controls the spatial structure and the other measures the proximity between the functional observations. It can be considered, in particular, as a supervised classification method when the variable of interest belongs to a predefined discrete finite set. The mean square error and almost complete (or sure) convergence are obtained when the sample considered is a locally stationary a-mixture sequence. Numerical studies were performed to illustrate the behavior of the proposed predictor. The finite sample properties based on simulated data show that the proposed prediction method outperforms the cl 1 predictor which not taking into account the spatial structure.

  • Referencias bibliográficas
    • Ahmed, M. S.,Ndiaye, M.,Attouch, M.,Dabo-Niang, S. (2019). 'k-nearest neighbors prediction and classification for spatial data', preprinted....
    • Ballari, D.,Giraldo, R.,Campozano, L.,Samaniego, E. (2018). 'Spatial functional data analysis for regionalizing precipitation seasonality...
    • Baouche, R. (2015). Prediction des Paramètres Physiques des Couches Pétrolifères par Analyse des Réseaux de Neurones et Analyse Faciologique....
    • Biau, G.,Cadre, B. (2004). 'Nonparametric spatial prediction'. Statistical Inference for Stochastic Processes. 7. 327
    • Biau, G.,Devroye, L. (2015). Lectures on the nearest neighbor method. Springer.
    • Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes: Estimation and prediction. 2. Springer-Verlag. New York.
    • Carbon, M.,Tran, L. T.,Wu, B. (1997). 'Kernel density estimation for random fields'. Statistics & Probability Letters. 36. 115
    • Chen, W.,Pourghasemi, H. R.,Zhang, S.,Wang, J. (2019). 'Spatial Modeling in GIS and R for Earth and Environmental Sciences'. Elsevier....
    • Cressie, N. A. C. (1993). Statistics for Spatial Data, Vol. 110 of Wiley Series in Probability and Statistics, revised edn, Wiley-Interscience....
    • Cuesta-Albertos, J. A.,Febrero-Bande, M.,de la Fuente, M. O. (2017). 'The ddG-classifier in the functional setting'. Test. 26. 119
    • Cuevas, A.,Febrero, M.,Fraiman, R. (2007). 'Robust estimation and classification for functional data via projection-based depth notions'....
    • Dabo-Niang, S. (2014). 'A kernel spatial density estimation allowing for the analysis of spatial clustering: application to Monsoon Asia...
    • Dabo-Niang, S. (2011). 'Kernel regression estimation for spatial functional random variables'. Far East Journal of Theoretical Statistics....
    • Dabo-Niang, S.,Ternynck, C.,Yao, A.-F. (2016). 'Nonparametric prediction of spatial multivariate data'. Journal of Nonparametric Statistics....
    • Dabo-Niang, S.,Yao, A.-F. (2007). 'Kernel regression estimation for continuous spatial processes'. Mathematical Methods of Statistics....
    • Dabo-Niang, S.,Yao, A.-F. (2013). 'Kernel spatial density estimation in infinite dimension space'. Metrika. 76. 19-52
    • Dabo-Niang, S.,Yao, A.-F.,Pischedda, L.,Cuny, P.,Gilbert, F. (2010). 'Spatial mode estimation for functional random fields with application...
    • Devroye, L.,Gyorfi, L.,Krzyzak, A.,Lugosi, G. (1994). 'On the strong universal consistency of nearest neighbor regression function estimates'....
    • Devroye, L.,Wagner, T. J. (1982). '8 nearest neighbor methods in discrimination'. Handbook of Statistics.
    • El Machkouri, M. (2007). 'Nonparametric regression estimation for random fields in a fixed-design'. Stat. Inference Stoch. Process....
    • El Machkouri, M. (2011). 'Asymptotic normality of the Parzen-Rosenblatt density estimator for strongly mixing random fields'. Statistical...
    • El Machkouri, M.,Stoica, R. (2010). 'Asymptotic normality of kernel estimates in a regression model for random fields'. J. Nonparametr....
    • Embling, C. B.,Illian, J.,Armstrong, E.,van der Kooij, J.,Sharpies, J.,Camphuysen, K. C. J.,Scott, B. E. (2012). 'Investigating fine-scale...
    • Escabias, M.,Aguilera, A.,Valderrama, M. (2005). 'Modeling environmental data by functional principal component logistic regression'....
    • Ferraty, F.,Vieu, P. (2006). Nonparametric Functional Data Analysis: Theory and Practice. Springer Series in Statistics. Springer.
    • Francisco-Fernandez, M.,Opsomer, J. D. (2005). 'Smoothing parameter selection methods for nonparametric regression with spatially correlated...
    • Francisco-Fernández, M.,Quintela-del Río, A.,Fernández-Casal, R. (2012). 'Nonparametric methods for spatial regression, an application...
    • Gardner, B.,Sullivan, P. J.,Morreale, S. J.,Epperly, S. P. (2008). 'Spatial and temporal statistical analysis of bycatch data: patterns...
    • Giraldo, R.,Delicado, P.,Mateu, J. (2011). 'Ordinary kriging for function-valued spatial data'. Environmental and Ecological Statistics....
    • Hallin, M.,Lu, Z.,Tran, L. T. (2004). 'Local linear spatial regression'. The Annals of Statistics. 32. 2469
    • Hastie, T.,Tibshirani, R. (1996). 'Discriminant adaptive nearest neighbor classification and regression'. Advances in Neural Information...
    • Heppell, S. S.,Crowder, L. B.,Menzel, T. R. (1999). Life table analysis of long-lived marine species with implications for conservation and...
    • Ignaccolo, R.,Ghigo, S.,Bande, S. (2013). 'Functional zoning for air quality'. Environmental and ecological statistics. 20. 109
    • Klemelá, J. (2008). 'Density estimation with locally identically distributed data and with locally stationary data'. J. Time Ser....
    • Lefort, R.,Fablet, R.,Berger, L.,Boucher, J.-M. (2011). 'Spatial statistics of objects in 3-d sonar images: application to fisheries acoustics'....
    • Li, X.,Ghosal, S.. (2018). 'Bayesian classification of multiclass functional data'. Electronic Journal of Statistics. 12. 4669
    • Luan, J.,Zhang, C,Xu, B.,Xue, Y.,Ren, Y. (2018). 'Modelling the spatial distribution of three portunidae crabs in haizhou bay, China'....
    • Masry, E. (2005). 'Nonparametric regression estimation for dependent functional data: asymptotic normality'. Stochastic Process. Appl....
    • Mateu, J.,Romano, E. (2017). 'Advances in spatial functional statistics'.
    • Menafoglio, A. (2021). 'Advances in Compositional Data Analysis'. Springer International Publishing.
    • Menafoglio, A.,Pigoli, D.,Secchi, P. (2022). 'Mathematical foundations of functional kriging in Hilbert spaces and riemannian manifolds'....
    • Menafoglio, A.,Secchi, P.,Rosa, M. D. (2013). 'A universal kriging predictor for spatially dependent functional data of a Hilbert space'....
    • Menezes, R.,García-Soidán, P.,Ferreira, C. (2010). 'Nonparametric spatial prediction under stochastic sampling design'. Journal of...
    • Ndiaye, M.,Dabo-Niang, S.,Ngom, P.,Ciré Elimane, S.,Fall, M. (2020). Contribution to spatial and functional statistics : Modelingspatio-temporal...
    • Neaderhouser, C. C. (1980). 'Convergence of block spins defined by a random field'. J. Statist. Phys. 22. 673
    • Niku, J.,Hui, F. K.,Taskinen, S.,Warton, D. I. (2019). 'gllvm: Fast analysis of multivariate abundance data with generalized linear latent...
    • Niku, J.,Hui, F. K.,Taskinen, S.,Warton, D. I. (2021). 'Analyzing environmental-trait interactions in ecological communities with fourth-corner...
    • Oshinubi, K. (2022). 'Functional data analysis: Application to daily observation of COVID-19 prevalence in france'. AIMS Mathematics....
    • Paredes, R.,Vidal, E. (2006). 'Learning weighted metrics to minimize nearest-neighbor classification error'. IEEE Transactions on...
    • Pollock, L. J.,Tingley, R.,Morris, W. K.,Golding, N.,O'Hara, R. B.,Parris, K. M.,Vesk, P. A.,McCarthy, M. A.. (2014). 'Understanding...
    • Rachdi, M.,Laksaci, A.,Al-Awadhi, F. A. (2021). 'Parametric and nonparametric conditional quantile regression modeling for dependent spatial...
    • Ripley, B. (1987). 'Develoments in Numerical Ecology'. Springer.
    • Rivoirard, J.,Simmonds, J.,Foote, K.,Fernandes, R,Bez, N. (2000). Geostatistics for estimating fish abundance. Wiley Online Library.
    • Rosenblatt, M. (1985). Stationary sequences and random fields. Birkhauser. Boston.
    • Ruiz-Medina, M. (2011). 'Spatial autoregressive and moving average Hilbertian processes'. Journal of Multivariate Analysis. 102. 292-305
    • Ruiz-Medina, M. D.,Anh, V. V.,Espejo, R. M.,Angulo, J. M.,Frias, M. P. (2015). 'Least-squares estimation of multifractional random fields...
    • Ruiz-Medina M, E. R. (2012). 'Spatial autoregressive functional plug-in prediction of ocean surface temperature'. Stoch Environ Res...
    • Soltysiak, M.,Blachnik, M.,Dabrowska, D. (2016). 'Machine-learning methods in the classification of water bodies'. Environmental &...
    • Sørensen, H.,Goldsmith, J.,Sangalli, L. M. (2013). 'An introduction with medical applications to functional data analysis'. Statistics...
    • Takahata, H. (1983). 'On the rates in the central limit theorem for weakly dependent random fields'. Zeitschrift fur Wahrscheinlichkeitstheorie...
    • Ternynck, C. (2014). 'Spatial regression estimation for functional data with spatial dependency'. SFDS. 2
    • Torres, J. M.,Nieto, P. G.,Alejano, L.,Reyes, A. (2011). 'Detection of outliers in gas emissions from urban areas using functional data...
    • Tran, L. T. (1990). 'Kernel density estimation on random fields'. Journal of Multivariate Analysis. 34. 37-53
    • Wang, J.-L.,Chiou, J.-M.,Müller, H.-G. (2016). 'Functional data analysis'. Annual Review of Statistics and Its Application. 257
    • Wu, H.,Li, Y.-F. (2022). 'Clustering spatially correlated functional data with multiple scalar covariates'. IEEE Transactions on Neural...
    • Xiaoying, W.,Qian, S.,Jialiang, G. (2021). Research on nonparametric classification method of functional data. International Conference on...
    • Yan, F.,Liu, L.,Li, Y.,Zhang, Y.,Chen, M.,Xing, X. (2015). 'A dynamic water quality index model based on functional data analysis'....
    • Yates, M. C. (2021). 'Environmental RNA: A revolution in ecological resolution?'. Trends in Ecology & Evolution. 36. 601
    • Yen, J. D. L.,Thomson, J. R.,Paganin, D. M.,Keith, J. M.,Nally, R. M. (2014). 'Function regression in ecology and evolution: FREE'....
    • Young, M.,Carr, M. H. (2015). 'Application of species distribution models to explain and predict the distribution, abundance and assemblage...
    • Younso, A. (2017). 'On the consistency of a new kernel rule for spatially dependent data'. Statistics & Probability Letters.
    • Zhang, H. (2019). Topics in functional data analysis and machine learning predictive inference. Iowa State University.
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno