Ir al contenido

Documat


Some Developments in Bayesian Hierarchical Linear Regression Modeling

  • Autores: Juan Sosa, Jeimy-Paola Aristizabal
  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 45, Nº. 2, 2022, págs. 231-255
  • Idioma: inglés
  • DOI: 10.15446/rce.v45n2.98988
  • Títulos paralelos:
    • Algunos desarrollos en modelos de regresión lineal jerárquicos bayesianos
  • Enlaces
  • Resumen
    • español

      Resumen Considerando la flexibilidad y aplicabilidad del modelamiento Bayesiano, en este trabajo se revisan las principales características de dos modelos jerárquicos en un escenario de regresión. Se estudia la estructura probabilística completa de los modelos junto con la distribución condicional completa para cada parámetro del modelo. Las extensiones jerárquicas que se presentan permiten que la media de la segunda etapa del modelo tenga una dependencia lineal de un conjunto de covariables. Se describen y derivan completamente los algoritmos de muestreo de Gibbs para ajustar los modelos. Además, se considera un caso de estudio en el que se caracteriza el tamaño de plantas en función de la concentración de nitrógeno en el suelo y un factor de agrupación (fincas).

    • English

      Abstract Considering the flexibility and applicability of Bayesian modeling, in this work we revise the main characteristics of two hierarchical models in a regression setting. We study the full probabilistic structure of the models along with the full conditional distribution for each model parameter. Under our hierarchical extensions, we allow the mean of the second stage of the model to have a linear dependency on a set of covariates. The Gibbs sampling algorithms used to obtain samples when fitting the models are fully described and derived. In addition, we consider a case study in which the plant size is characterized as a function of nitrogen soil concentration and a grouping factor (farm).

  • Referencias bibliográficas
    • Albert, J. (2009). Bayesian Computation with R. Use R!, Springer.
    • Banerjee, S.,Carlin, B.,Gelfand, A. (2014). Hierarchical modeling and analysis for spatial data. CRC press.
    • Blei, D.,Kucukelbir, A.,McAuliffe, J. (2017). 'Variational inference: A review for statisticians'. Journal of the American statistical...
    • Christensen, R.,Johnson, W.,Branscum, A.,Hanson, T. (2011). Bayesian Ideas and Data Analysis: An Introduction for Scientists and Statisticians....
    • Crawley, M. J. (2012). The R book. John Wiley & Sons.
    • Dey, D.,Ghosh, S.,Mallick, B. (2000). Generalized linear models: A Bayesian perspective. CRC Press.
    • Ferguson, T. (1973). 'A bayesian analysis of some nonparametric problems'. The annals of statistics. 209
    • Gamerman, D.,Lopes, H. (2006). Markov chain Monte Carlo: stochastic simulation for Bayesian inference. CRC Press.
    • Gelman, A.,Carlin, J.,Stern, H.,Dunson, D.,Vehtari, A.,Rubin, D. (2013). Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts...
    • Gelman, A.,Hwang, J.,Vehtari, A. (2014). 'Understanding predictive information criteria for bayesian models'. Statistics and computing....
    • Hoff, R. (2009). A First Course in Bayesian Statistical Methods. Springer Texts in Statistics, Springer.
    • Ishwaran, H.,Zarepour, M. (2000). 'Markov chain monte carlo in approximate dirichlet and beta two-parameter process hierarchical models'....
    • Kass, R.,Wasserman, L. (1995). 'A reference bayesian test for nested hypotheses and its relationship to the schwarz criterion'. Journal...
    • Kolaczyk, E.,Csárdi, G. (2020). Statistical analysis of network data with R. Springer.
    • Lau, J.,Green, P. (2007). 'Bayesian model-based clustering procedures'. Journal of Computational and Graphical Statistics. 16. 526
    • Miiller, P.,Quintana, F. A.,Jara, A.,Hanson, T. (2015). Bayesian nonparametric data analysis. Springer.
    • Pitman, J.,Yor, M. (1997). 'The two-parameter poisson-dirichlet distribution derived from a stable subordinator'. The Annals of Probability....
    • Sethuraman, J. (1994). 'A constructive definition of dirichlet priors'. Statistica sinica. 639
    • Sosa, J.,Buitrago, L. (2021). 'Time-varying coefficient model estimation through radial basis functions'. Journal of Applied Statistics....
    • Spiegelhalter, D. J.,Best, N. G.,Carlin, B. P.,Linde, A. (2014). 'The deviance information criterion: 12 years on'. Journal of the...
    • Spiegelhalter, D. J.,Best, N. G.,Carlin, B. P.,Van Der Linde, A. (2002). 'Bayesian measures of model complexity and fit'. Journal...
    • Stephens, M. (2000). 'Dealing with label switching in mixture models'. Journal of the Royal Statistical Society: Series B (Statistical...
    • Wakefield, J. (2013). Bayesian and frequentist regression methods. Springer Science & Business Media.
    • Watanabe, S. (2010). 'Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning...
    • Watanabe, S. (2013). 'A widely applicable Bayesian information criterion'. Journal of Machine Learning Research. 14. 867
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno