Ir al contenido

Documat


Variable Selection in Switching Dynamic Regression Models

  • Autores: Dayna P. Saldana-zepeda, Ciro Velasco Cruz, Victor H. Torres-preciado
  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 45, Nº. 1, 2022, págs. 231-263
  • Idioma: inglés
  • DOI: 10.15446/rce.v45n1.85385
  • Títulos paralelos:
    • Selección de variables en modelos de regresión dinámicos de cambios de régimen
  • Enlaces
  • Resumen
    • español

      Resumen Fenómenos dinámicos complejos en los que la dinámica está relacionada con eventos (modos) que provocan cambios estructurales a lo largo del tiempo, se aproximan mediante un sistema dinámico lineal de cambio de régimen (SDLR). Extendemos el SDLR al permitir que el error de medición sea específico del modo, una forma flexible de modelar datos no estacionarios. Además, para los modelos que son funciones de variables explicativas, adaptamos un método de selección de variables para identificar cuáles de ellas son significativas en cada modo. El modelo propuesto es un modelo bayesiano no paramétrico flexible que permite conocer el número de modos y su ubicación, y dentro de cada modo, identifica las variables significativas y estima los coeficientes de regresión. El desempeño del modelo se evalúa mediante simulación y se presentan dos ejemplos de aplicación de un conjunto de datos de series de tiempo meteorológicas de Barranquilla, Colombia.

    • English

      Abstract Complex dynamic phenomena in which dynamics is related to events (modes) that cause structural changes over time, are well described by the switching linear dynamical system (SLDS). We extend the SLDS by allowing the measurement noise to be mode-specific, a flexible way to model non stationary data. Additionally, for models that are functions of explanatory variables, we adapt a variable selection method to identify which of them are significant in each mode. Our proposed model is a flexible Bayesian nonparametric model that allows to learn about the number of modes and their location, and within each mode, it identifies the significant variables and estimates the regression coefficients. The model performance is evaluated by simulation and two application examples from a dataset of meteorological time series of Barranquilla, Colombia are presented.

  • Referencias bibliográficas
    • Antoniak, C. (1974). 'Mixtures of dirichlet processes with applications to bayesian nonparametric problems'. The Annals of Statistics....
    • Barber, D. (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press.
    • Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer.
    • Blackwell, D.,MacQueen, J. (1973). 'Ferguson distributions via Polya urn schemes'. The Annals of Statistics. 1. 353
    • Bregler, C. (1997). Learning and recognizing human dynamics in video sequences. 'Proceedings of IEEE Computer Society Conference on Computer...
    • Carvalho, C.,Lopes, H. (2007). 'Simulation based sequential analysis of markov switching stochastic volatility models'. Computational...
    • Du, K.,Mu, C.,Deng, J.,Yuan, F. (2013). 'Study on atmospheric visibility variations and the impacts of meteorological parameters using...
    • Escobar, M. (1988). Estimating the Means of Several Normal Populations by Nonparametric Estimation of the Distribution of the Means. Yale...
    • Escobar, M.,West, M. (1995). 'Bayesian density estimation and inference using mixtures'. Journal of the American Statistical Association....
    • Ferguson, T. (1973). 'A bayesian analysis of some nonparametric problems'. The Annals of Statistics. 1. 209
    • Fox, E.,Sudderth, E.,Jordan, M.,Willsky, A. (2011). 'Bayesian nonparametric inference of switching dynamic linear models'. IEEE Transactions...
    • Fox, E.,Sudderth, E.,Jordan, M.,Willsky, A. (2011). 'A sticky hdp-hmm with application to speaker diarization'. The Annals of Applied...
    • Han, M.,Ren, W.,Liu, X. (2015). 'Joint mutual information-based input variable selection for multivariate time series modeling'. Engineering...
    • Huang, W.,Tan, J.,Kan, H.,Zhao, N.,Song, W.,Song, G.,Chen, G.,Jiang, L.,Jiang, C.,Chen, R.,Chen, B. (2009). 'Visibility, air quality and...
    • Huerta, G.,Sansó, B.,Stroud, J. R. (2004). 'A spatiotemporal model for mexico city ozone levels'. Journal of the Royal Statistical...
    • Ishwaran, H.,James, L. (2001). 'Gibbs sampling methods for stick-breaking priors'. Journal of the American Statistical Association....
    • Ishwaran, H.,James, L. (2002). 'Approximate dirichlet process computing in finite normal mixtures: Smoothing and prior information'....
    • Ishwaran, H.,Zarepour, M. (2000). 'Markov chain monte carlo in approximate dirichlet and beta two-parameter process hierarchical models'....
    • Ishwaran, H.,Zarepour, M. (2002). 'Dirichlet prior sieves in finite normal mixtures'. Statistica Sinica. 12. 941
    • Ishwaran, H.,Zarepour, M. (2002). 'Exact and approximate sum representations for the dirichlet process'. The Canadian Journal of Statistics....
    • Kalman, R. (1960). 'A new approach to linear filtering and prediction problems'. Journal of Basic Engineering. 35-45
    • Kalman, R. (1963). 'Mathematical description of linear dynamical systems'. Journal of the Society for Industrial and Applied Mathematics....
    • Kim, C. (1994). 'Dynamic linear models with markov switching'. Journal of Econometrics. 60. 1-22
    • Kuo, L.,Mallick, B. (1998). 'Variable selection for regression models'. The Indian Journal of Statistics. Special Issue on Bayesian...
    • Lamon III, E.,Carpenter, S.,Stow, C. (1998). 'Forecasting PCB concentrations in Lake Michigan salmonids: a dynamic linear model approach'....
    • MacEachern, S. N. (1994). 'Estimating normal means with a conjugate style dirichlet process prior'. Communications in Statistics-Simulation...
    • Majewski, G.,Kleniewska, M.,Brandyk, A. (2011). 'Seasonal variation of particulate matter mass concentration and content of metals. Polish...
    • Majewski, G.,Rogula-Kozlowska, W.,Czechowski, P. O.,Badyda, A.,Brandyk, A. (2015). 'The impact of selected parameters on visibility: First...
    • McAlinn, K.,West, M. (2016). Dynamic bayesian predictive synthesis in time series forecasting, Technical report. Duke University.
    • Meinhold, R.,Singpurwalla, N. (1983). 'Understanding the kalman filter'. The American Statistician. 37. 123
    • (2021). National Centers for Environmental Information. 'Local climatological data'.
    • Pavlovic, V.,Rehg, J.,MacCormick, J. (2001). 'Advances in Neural Information Processing Systems. Neural Information Processing Systems...
    • Petris, G.,Petrone, S.,Campagnoli, P. (2009). Dynamic Linear Models with R. Springer-Verlag.
    • Rauch, H.,Striebel, C.,Tung, F. (1965). 'Maximum likelihood estimates of linear dynamic systems. AIAA Journal. 3. 1445
    • Redner, R.,Walker, H. (1984). 'Mixture densities, maximum likelihood and the em algorithm'. SIAM Review. 26. 195-239
    • Rodríguez, A. (2007). Some Advances in Bayesian Nonparametric Modeling. Duke University.
    • Sethuraman, J. (1994). 'A constructive definition of dirichlet priors'. Statistica Sinica. 639
    • Stephens, M. (2000). 'Dealing with label switching in mixture models. Journal of the Royal Statistical Society. 62. 795-809
    • Teh, Y. W.,Jordan, M. I.,Beal, M. J.,Blei, D. M. (2006). 'Hierarchical dirichlet processes. Journal of the American Statistical Association....
    • Thach, T.-Q.,Wong, C.-M.,Chan, K.-P.,Chau, Y.-K.,Chung, Y.-N.,Ou, C.-Q.,Yang, L.,Hedley, A. J. (2010). 'Daily visibility and mortality:...
    • Tsai, Y.,Kuo, S.-C.,Lee, W.-J.,Chen, C.-L.,Chen, P.-T. (2007). 'Long-term visibility trends in one highly urbanized, one highly industrialized,...
    • Velasco-Cruz, C.,Leman, S. C.,Hudy, M.,Smith, E. P. (2012). 'Assessing the risk of rising temperature on brook trout: a spatial dynamic...
    • Wang, L.,Wang, X. (2013). 'Hierarchical dirichlet process model for gene expression clustering. EURASIP Journal on Bioinformatics and...
    • Watson, A.,Ramirez, C.,Salud, E. (2009). 'Predicting visibility of aircraft. PLOS ONE. 5. 1-16
    • West, M. (2013). Bayesian Dynamic Modelling. Oxford University Press, chapter 8.
    • West, M.,Harrison, J. (1997). Bayesian Forecasting and Dynamic Models. 2. Springer.
    • Zeng, Y.,Wu, S. (2013). State-space models. Applications in Economics and Finance. Springer.
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno