Ir al contenido

Documat


A Reduction of the Batyrev-Manin Conjecture for Kummer Surfaces

  • Autores: David McKinnon
  • Localización: Canadian mathematical bulletin, ISSN 0008-4395, Vol. 47, Nº 3, 2004, págs. 398-406
  • Idioma: inglés
  • DOI: 10.4153/cmb-2004-039-6
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let V be a K3 surface defined over a number field k. The Batyrev-Manin conjecture for V states that for every nonempty open subset U of V, there exists a finite set ZU of accumulating rational curves such that the density of rational points on U-ZU is strictly less than the density of rational points on ZU. Thus, the set of rational points of V conjecturally admits a stratification corresponding to the sets ZU for successively smaller sets U. In this paper, in the case that V is a Kummer surface, we prove that the Batyrev-Manin conjecture for V can be reduced to the Batyrev-Manin conjecture for V modulo the endomorphisms of V induced by multiplication by m on the associated abelian surface A. As an application, we use this to show that given some restrictions on A, the set of rational points of V which lie on rational curves whose preimages have geometric genus 2 admits a stratification of Batyrev-Manin type.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno