Ir al contenido

Documat


A computationally efficient estimator for large clustered non-Gaussian data

  • Alvaro J. Alvaro J. Flórez [1] ; Geert Molenberghs ; Geert Verbeke ; Pavlos Mamouris [2] ; Bert Vaes [3]
    1. [1] University of Hasselt

      University of Hasselt

      Arrondissement Hasselt, Bélgica

    2. [2] KU Leuven

      KU Leuven

      Arrondissement Leuven, Bélgica

    3. [3] Academisch Centrum voor Huisartsgeneeskunde
  • Localización: Proceedings of the 35th International Workshop on Statistical Modelling : July 20-24, 2020 Bilbao, Basque Country, Spain / Itziar Irigoien Garbizu (ed. lit.) Árbol académico, Dae-Jin Lee (ed. lit.) Árbol académico, Joaquín Martínez Minaya (ed. lit.), María Xosé Rodríguez Álvarez (ed. lit.), 2020, ISBN 978-84-1319-267-3, págs. 79-84
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The generalized linear mixed model (GLMM) is one of the most frequently used techniques to analyze clustered non-Gaussian data. Commonly, the GLMM is fitted by maximizing the marginal (log-)likelihood, i.e., integrating out the random effects. However, this whole maximisation may require a considerable amount of computing resources. Although computationally manageable with medium to large data, it can be too time-consuming or computationally intractable with very large clusters and/or with a large number of clusters. To overcome this, a fast two-stage estimator for correlated non-Gaussian data is presented. It is rooted in the pseudo-likelihood split-sample methodology. Based on simulations, it shows good statistical properties, and it is computationally much faster than full maximum likelihood. The approach is illustrated using a large dataset belonging to a network of Belgian general practices


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno