Ir al contenido

Documat


Dynamical Behavior and Numerical Simulation of an Influenza A Epidemic Model with Log-Normal Ornstein–Uhlenbeck Process

  • Xiaoshan Zhang [1] ; Xinhong Zhang [1]
    1. [1] China University of Petroleum (East China),
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01051-7
  • Enlaces
  • Resumen
    • Influenza remains one of the most widespread epidemics, characterized by serious pathogenicity and high lethality, posing a significant threat to public health. This paper focuses on an influenza A infection model that includes vaccination and asymptomatic patients. The deterministic model examines the existence and local asymptotic stability of equilibria. In light of the influence of environmental disruption on the spread of disease, we develop a stochastic model in which the transmission rate follows a log-normal Ornstein–Uhlenbeck process. To demonstrate the dynamic behavior of the stochastic model, we verify the existence and uniqueness of the global positive solution. The establishment of suitable Lyapunov functions allows for the determination of sufficient conditions for the stationary distribution and extinction of the disease.

      Furthermore, the expression of the local density function around the quasi-endemic equilibrium is represented. Eventually, numerical simulations are conducted to support theoretical results and explore the effect of environmental noise. Our findings indicate that high noise intensity can expedite the extinction of the disease, while low noise intensity can facilitate the disease reaching a stationary distribution. This information may be valuable in developing strategies for disease prevention and control.

  • Referencias bibliográficas
    • 1. Chen, Z., Zhu, W., Feng, H., Luo, H.: Changes in corporate social responsibility efficiency in Chinese food industry brought by COVID-19...
    • 2. Li, B., Wang, W., et al.: Aggregation-induced emission-based macrophage-like nanoparticles for targeted photothermal therapy and virus...
    • 3. W. H. O.: Influenza A (H1N1) variant virus-the Netherlands. https://www.who.int/emergencies/ disease-outbreak-news/item/2023-DON486
    • 4. W. H. O.: Influenza(Seasonal). https://www.who.int/news-room/fact-sheets/detail/influenza- (seasonal) (2023)
    • 5. Centers for Disease Control and Prevention: Key Facts About Influenza(Flu). https://www.cdc.gov/ flu/about/keyfacts.htm
    • 6. Morgan, J.: The 1918–1919 flu pandemic: Lessons learned or fingers crossed? Lancet Resp. Med. 3, 844–845 (2015)
    • 7. Warren-Gash, C., Blackburn, R., Whitaker, H., McMenamin, J., Hayward, A.C.: Laboratory-confirmed respiratory infections as triggers for...
    • 8. Pease, C.: An evolutionary epidemiological mechanism with applications to type A influenza. Theor. Popu. Biol. 31, 422–452 (1987)
    • 9. Massad, E., Burattini, M., Coutinho, F., Lopez, L.: The 1918 influenza A epidemic in the city of Sao Paulo, Brazil. Med. Hypoth. 68, 442–445...
    • 10. Hooten, M.B., Anderson, J., Waller, L.A.: Assessing North American influenza dynamics with a statistical SIRS model. Spat. Spatio-temporal...
    • 11. Rai, R.K., Tiwari, P.K., Khajanchi, S.: Modeling the influence of vaccination coverage on the dynamics of COVID-19 pandemic with the effect...
    • 12. Jabbari, A., Lotfi, M., Khajanchi, S.: Mathematical analysis of the dynamics of a fractional-order tuberculosis epidemic in a patchy environment...
    • 13. Bera, S., Khajanchi, S., Roy, T.K.: Dynamics of an HTLV-I infection model with delayed CTLs immune response. Appl. Math. Comput. 430,...
    • 14. Din, A., Li, Y.: Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity....
    • 15. Mondal, J., Khajanchi, S., Samui, P.: Impact of media awareness in mitigating the spread of an infectious disease with application to...
    • 16. Das, D.K., Khajanchi, S., Kar, T.K.: The impact of the media awareness and optimal strategy on the prevalence of tuberculosis. Appl. Math....
    • 17. Dwivedi, A., Keval, R., Khajanchi, S.: Modeling optimal vaccination strategy for dengue epidemic model: a case study of India. Phys. Scripta...
    • 18. Saha, S., Dutta, P., Samanta, G.: Dynamical behavior of SIRS model incorporating government action and public response in presence of...
    • 19. Dutta, P., Samanta, G., Nieto, J.J.: Periodic transmission and vaccination effects in epidemic dynamics: a study using the SIVIS model....
    • 20. Samanta, G.P.: Permanence and extinction for a nonautonomous avian-human influenza epidemic model with distributed time delay. Math. Comp....
    • 21. Sharma, S., Mondal, A., Pal, A.K., Samanta, G.P.: Stability analysis and optimal control of avian influenza virus A with time delays....
    • 22. Din, A.: The stochastic bifurcation analysis and stochastic delayed optimal control for epidemic model with general incidence function....
    • 23. Samsuzzoha, M., Singh, M., Lucy, D.: A numerical study on an influenza epidemic model with vaccination and diffusion. Appl. Math. Comput....
    • 24. Guan, X., Yang, F., Cai, Y., Wang, W.: Global stability of an influenza A model with vaccination. Appl. Math. Lett. 134, 108322 (2022)
    • 25. Sardar, M., Khajanchi, S.: Is the Allee effect relevant to stochastic cancer model? J. Appl. Math. Comp. 68(4), 2293–2315 (2022)
    • 26. Alsakaji, H.J., Rihan, F.A., Hashish, A.: Dynamics of a stochastic epidemic model with vaccination and multiple time-delays for COVID-19...
    • 27. Rihan, F.A., Alsakaji, H.J.: Analysis of a stochastic HBV infection model with delayed immune response. Math. Biosci. Eng. 18(5), 5194–5220...
    • 28. Rihan, F.A., Alsakaji, H.J., Kundu, S., et al.: Dynamics of a time-delay differential model for tumourimmune interactions with random...
    • 29. Shi, Z., Jiang, D.: Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein-Uhlenbeck process....
    • 30. Zhang, X., Shi, Z., Wang, Y.: Dynamics of a stochastic avian-human influenza epidemic model with mutation. Phys. A 534, 121940 (2019)
    • 31. Zhang, F., Zhang, X.: The threshold of a stochastic avian-human influenza epidemic model with psychological effect. Phys. A 492, 485–495...
    • 32. Lanconelli, A., Perçin, B.: On a new method for the stochastic perturbation of the disease transmission coefficient in SIS models. Appl....
    • 33. Zhang, X., Yuan, R.: A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function....
    • 34. Zhang, X., Su, T., Jiang, D.: Dynamics of a stochastic SVEIR epidemic model incorporating General incidence rate and Ornstein-Uhlenbeck...
    • 35. Diekmann, O., Heesterbeek, J., Metz, J.: On the definition and the computation of the basic reproduction ratio R0 in models for infectious...
    • 36. Sharma, S., Samanta, G.P.: Stability analysis and optimal control of an epidemic model with vaccination. Int. J. Biomath. 8(03), 1550030...
    • 37. Khajanchi, S.: Uniform persistence and global stability for a brain tumor and immune system interaction. Biophys. Rev. Lett. 12(04), 187–208...
    • 38. Din, A., Li, Y., Yusuf, A.: Delayed hepatitis B epidemic model with stochastic analysis. Chaos, Solitons Fractals 146, 110839 (2021)
    • 39. Mao, X.: Stochastic Differential Equations and Applications. Horwood Publishing, Chichester (1997)
    • 40. Meyn, S., Tweedie, R.L.: Stability of Markovian processes III: Foster-Lyapunov criteria for continuoustime processes. Adv. Appl. Probab....
    • 41. Zhang, X., Yang, Q., Tan, S.: Dynamical behavior and numerical simulation of a stochastic ecoepidemiological model with Ornstein-Uhlenbeck...
    • 42. Liu, H., Ma, Z.: The threshold of survival for system of two species in a polluted environment. J. Math. Biol. 30, 49–61 (1991)
    • 43. Ma, Z., Zhou, Y., Li, C.: Qualitative and Stability Methods for Ordinary Differential Equations. Science Press (2001)
    • 44. Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer, Berlin (1983)
    • 45. Zhou, B., Jiang, D., Dai, Y., Hayat, T.: Stationary distribution and density function expression for a stochastic SIQRS epidemic model...
    • 46. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)
    • 47. Andreasen, V.: Dynamics of annual influenza A epidemics with immuno-selection. J. Math. Biol. 46(6), 504–536 (2003)
    • 48. Zhou, B., Jiang, D., Han, B., Hayat, T.: Threshold dynamics and density function of a stochastic epidemic model with media coverage and...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno