Ir al contenido

Documat


Estimates for the Number of Limit Cycles in Discontinuous Generalized Liénard Equations

  • Autores: Tiago M. P. de Abreu, Ricardo M. Martins
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01048-2
  • Enlaces
  • Resumen
    • In this paper, we study the maximum number of limit cycles for the piecewise smooth system of differential equations x˙ = y, y˙ = −x −ε ·( f (x)· y +sgn(y)· g(x)). Using the averaging method, we were able to generalize a previous result for Liénard systems.

      In our generalization, we consider g as a polynomial of degree m. We conclude that for sufficiently small values of |ε|, the number hm,n = n 2 + m 2 +1 serves as a lower bound for the maximum number of limit cycles in this system, which bifurcates from the periodic orbits of the linear center x˙ = y, y˙ = −x. Furthermore, we demonstrate that it is indeed possible to obtain a system with hm,n limit cycles.

  • Referencias bibliográficas
    • 1. Asheghi, R., Bakhshalizadeh, A.: Limit cycles in a Liénard system with a cusp and a nilpotent saddle of order 7. Chaos, Solitons Fractals...
    • 2. Braga, D.C., Mello, L.F.: More than three limit cycles in discontinuous piecewise linear differential systems with two zones in the plane....
    • 3. Buic˘a, A., Llibre, J.: Averaging methods for finding periodic orbits via Brouwer degree. Bull. Sci. Math. 128(1), 7–22 (2004)
    • 4. Caldas, M.D.A., Martins, R.M.: Limit cycles for classes of piecewise smooth differential equations separated by the unit circle (2022)....
    • 5. De Maesschalck, P., Dumortier, F.: Classical Liénard equations of degree n ≥ 6 can have [n − 12] + 2 limit cycles. J. Differ. Equ....
    • 6. de Melo, W., Lins, W.A., Pugh, C.C.: On Liénard’s equation. In: Palis, J., do Carmo, M. (eds.) Geometry and Topology, pp. 335–357. Springer,...
    • 7. Dong, G., Liu, C.: Note on limit cycles for m-piecewise discontinuous polynomial Liénard differential equations. Z. Angew. Math. Phys....
    • 8. Feng, Z.: Exact solutions to the Liénard equation and its applications. Chaos, Solitons Fractals 21(2), 343–348 (2004). ISSN:0960-0779
    • 9. Huan, S.M., Yang, X.S.: On the number of limit cycles in general planar piecewise linear systems. Discrete Contin. Dyn. Syst. 32(6), 2147–2164...
    • 10. Il’yashenko, Y.S.: Finiteness Theorem for Limit Cycles. AMS, Providence (1991)
    • 11. Li, S., Llibre, J.: On the limit cycles of planar discontinuous piecewise linear differential systems with a unique equilibrium. Discrete...
    • 12. Liénard, Alfred: Etude des oscillations entretenues. Rev. Gen. l’Elactr. 23, 901–902 (1928)
    • 13. Llibre, J., Novaes, D.D., Teixeira, M.A.: Periodic solutions of Lienard differential equations via averaging theory of order two. Anais...
    • 14. Llibre, J., Ramiez, R., Sadovskaia, N.: On the 16th Hilbert problem for algebraic limit cycles. J. Differ. Equ. 248(6), 1401–1409 (2010)....
    • 15. Llibre, J., Teixeira, M.A.: Limit cycles for m-piecewise discontinuous polynomial Liénard differential equations. Z. Angew. Math. Phys....
    • 16. Llibre, J., Zhang, X.: Limit cycles for discontinuous planar piecewise linear differential systems separated by an algebraic curve. Int....
    • 17. Llibre, J., Ponce, E.: Three nested limit cycles in discontinuous piecewise linear differential systems with two zones. English. Dyn....
    • 18. Llibre, J., Teixeira, M.A.: Periodic orbits of continuous and discontinuous piecewise linear differential systems via first integrals....
    • 19. Llibre, J., Novaes, D.D., Teixeira, M.A.: Maximum number of limit cycles for certain piecewise linear dynamical systems. Nonlinear Dyn....
    • 20. Martins, R.M., Mereu, A.C.: Limit cycles in discontinuous classical Liénard equations. Nonlinear Anal.: Real World Appl. 20, 67–73 (2014)
    • 21. Mereu, A.C., Llibre, J., Novaes, D.D.: Averaging theory for discontinuous piecewise differential systems. J. Differ. Equ. 258, 4007–4032...
    • 22. Novaes, D.D., Ponce, E.: A simple solution to the Braga–Mello conjecture. Int. J. Bifurc. Chaos 25(01), 1550009 (2015)
    • 23. Seara, T.M., Guardia, M., Teixeira, M.A.: Generic bifurcations of low codimension of planar Filippov systems. J. Differ. Equ. 250(4),...
    • 24. Stewart, Ian: Hilbert’s sixteenth problem. Nature 326(6110), 248 (1987). https://doi.org/10.1038/ 326248a0
    • 25. Tonon, D., Llibre, J., Velter, M.Q.: Crossing periodic orbits via first integrals. Int. J. Bifurc. Chaos 30 (2020)
    • 26. Wolfram Research Inc. Mathematica, Version 13.2. Champaign (2022). https://www.wolfram.com/ mathematica
    • 27. Yang, J., Han, M.: Limit cycle bifurcations of some Liénard systems with a cuspidal loop and a homoclinic loop. Chaos, Solitons Fractals...
    • 28. Yu, P., Han,M.: Limit cycles in generalized Liénard systems. Chaos, Solitons Fractals 30(5), 1048–1068 (2006). ISSN:0960-0779
    • 29. Yu, P., Han, M.: On limit cycles of the Liénard equation with Z2 symmetry. Chaos, Solitons Fractals 31(3), 617–630 (2007). ISSN:0960-0779

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno