Ir al contenido

Documat


The Limit Cycles for a Class of Non-autonomous Piecewise Differential Equations

  • Renhao Tian [1] ; Yulin Zhao [1]
    1. [1] Sun Yat-sen University

      Sun Yat-sen University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01050-8
  • Enlaces
  • Resumen
    • In this paper, we study a class of non-autonomous piecewise differential equations defined as follows: dx/dt = a0(t) + n i=1 ai(t)|x| i , where n ∈ N+ and each ai(t) is real, 1-periodic, and smooth function. We deal with two basic problems related to their limit cycles isolated solutions satisfyingx(0) = x(1) . First, we prove that, for any given n ∈ N+, there is no upper bound on the number of limit cycles of such equations. Second, we demonstrate that if a1(t), . . . , an(t) do not change sign and have the same sign in the interval [0, 1], then the equation has at most two limit cycles. We provide a comprehensive analysis of all possible configurations of these limit cycles.

      In addition, we extend the result of at most two limit cycles to a broader class of general non-autonomous piecewise polynomial differential equations and offer a criterion for determining the uniqueness of the limit cycle within this class of equations

  • Referencias bibliográficas
    • 1. Andersen, K.M., Sandqvist, A.: Existence of closed solutions of an equation x˙ = f (t, x), where f x (t, x) is weakly convex or concave...
    • 2. Bravo, J.L., Fernández, M., Ojeda, I.: Hilbert number for a family of piecewise nonautonomous equations. Qual. Theory Dyn. Syst. 23, 119...
    • 3. Bravo, J.L., Fernández, M., Tineo, A.: Periodic solutions of a periodic scalar piecewise ODE. Commun. Pure Appl. Anal. 6, 213–228 (2007)....
    • 4. Calanchi, M., Ruf, B.: On the number of closed solutions for polynomial ODE’s and a special case of Hilbert’s 16th problem. Adv. Differ....
    • 5. Chamberland, M., Gasull, A.: Chini equations and isochronous centers in three-dimensional differential systems. Qual. Theory Dyn. Syst....
    • 6. Coll, B., Gasull, A., Prohens, R.: Simple non-autonomous differential equations with many limit cycles. Commun. Appl. Nonlinear Anal. 15,...
    • 7. Gasull, A., Libre, J.: Limit cycles for a class of Abel equations. SIAM J. Math. Anal. 21, 1235–1244 (1990). https://doi.org/10.1137/0521068
    • 8. Gasull, A., Zhao, Y.: Existence of at most two limit cycles for some non-autonomous differential equations. Commun. Pure Appl. Anal. 22,...
    • 9. Han, M., Hou, X., Sheng, L., Wang, C.: Theory of rotated equations and applications to a population model. Discrete Contin. Dyn. Syst....
    • 10. Ilyashenko, Y.: Hilbert-type numbers for Abel equations, growth and zeros of holomorphic functions. Nonlinearity 13, 1337–1342 (2000)....
    • 11. Longo, I.P., Núñez, C., Obaya, R.: Critical transitions for scalar nonautonomous systems with concave nonlinearities: some rigorous estimates....
    • 12. Lloyd, N.G.: On a class of differential equations of Riccati type. J. Lond. Math. Soc. 10, 1–10 (1975). https://doi.org/10.1112/jlms/s2-10.1.1
    • 13. Lloyd, N.G.: A note on the number of limit cycles in certain two-dimensional systems. J. Lond. Math. Soc. 20, 277–286 (1979). https://doi.org/10.1112/jlms/s2-20.2.277
    • 14. Mawhin, J.: First order ordinary differential equations with several periodic solutions. Z. Angew. Math. Phys. 38, 257–265 (1987). https://doi.org/10.1007/BF00945410
    • 15. Neto, A.L.: On the number of solutions of the equation dx dt = n j=0 a j(t)x j , 0 ≤ t ≤ 1, for which x(0) = x(1). Inv. Math....
    • 16. Panov, A.A.: On the divariety of Poincaré mappings for cubic equations with variable coefficients. Funct. Anal. Appl. 33, 310–312 (1999)....
    • 17. Panov, A.A.: The number of periodic solutions of polynomial differential equations. Math. Notes 64, 622–628 (1998). https://doi.org/10.1007/BF02316287
    • 18. Pliss, V.A.: Nonlocal problems of the theory of oscillations. Academic Press (N.Y.) (1966). https://doi. org/10.1137/1013006
    • 19. Sandqvist, A., Andersen, K.M.: On the number of closed solutions to an equation x˙ = f (t, x), where fxn (t, x) ≥ 0 (n = 1, 2,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno