Ir al contenido

Documat


Modeling and Qualitative Dynamics of the Effects of Internal and External Storage device in a Discrete Fractional Computer Virus

  • Autores: R. Dhineshbabu, Jehad Alzabut, A.G.M. Selvam, Sina Etemad, Shahram Rezapour
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01041-9
  • Enlaces
  • Resumen
    • In this work, we focus on the application of epidemic approaches to computer viruses and investigate the dynamic transmission of multiple viruses, aiming to reduce computer destruction. Our goal is to create and examine computer viruses using the Atangana-Baleanu sense, which is employed in the fractional difference model for the spread of computer viruses. It included removable storage devices and external computer peripherals that were infected with computer viruses. The applications of fixed-point theory and iterative techniques are employed to analyze the existence and uniqueness results concerning the suggested model. Moreover, we extend several kinds of Ulam’s stability results for this discrete model. To demonstrate the implications of changing the fractional order in this instance of numerical simulation, we employed the Atanagana–Baleanu technique. The graphical outcomes validate our theoretical findings, which we used to evaluate the impact of infected external computers and removable storage devices on computer viruses.

  • Referencias bibliográficas
    • 1. Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, New York (2001)
    • 2. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics. Bull. Math. Biol. 53, 33–55 (1991)
    • 3. El-Sheikh, M.M.A., El-Marouf, S.A.A.: On stability an bifurcation of solutions of an SEIR epidemic model with vertical transmission. Int....
    • 4. Ibrahim, A., Humphries, U.W., Ngiamsunthorn, P.S., Baba, I., Qureshi, S., Khan, A.: Modeling the dynamics of COVID-19 with real data from...
    • 5. Qureshi, S., Argyros, I.K., Soomro, A., Gdawiec, K., Ali Shaikh, A., Hinca, E.: A new optimal rootfinding iterative algorithm: local and...
    • 6. Gomez-Aguilar, J.F., Sabir, Z., Alqhtani, M., Umar, M., Saad, K.M.: Neuro-evolutionary computing paradigm for the SIR model based on infection...
    • 7. Akbar, M., Nawaz, R.: Introducing a new integral transform called AR-transform. J. Math. Tech. Model. 1(1), 1–10 (2024)
    • 8. Onder, I., Esen, H., Secer, A., Ozisik, M., Bayram, M., Qureshi, S.: Stochastic optical solitons of the perturbed nonlinear Schrodinger...
    • 9. Gdawiec, K., Argyros, I.K., Qureshi, S., Soomro, A.: An optimal homotopy continuation method: convergence and visual analysis. J. Comput....
    • 10. Debnath, L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 54, 3413–3442 (2003)
    • 11. Ding, Y., Ye, H.: A fractional-order differential equation model of HIV infection of CD4+T -Cells. Math. Comput. Model. 50, 386–392...
    • 12. Xu, H.: Analytical approximations for a population growth model with fractional order. Commun. Nonlinear Sci. Numer. Simul. 14, 1978–1983...
    • 13. Ozalp, N., Demirci, E.: A fractional order SEIR model with vertical transmission. Math. Comput. Model. 54, 1–6 (2011)
    • 14. Khan, H., Alzabut, J., Tunc, O., Kaabar, M.K.A.: A fractal–fractional COVID-19 model with a negative impact of quarantine on the diabetic...
    • 15. George-Maria-Selvam, A., Dhineshbabu, R., Britto Jacob, S.: Quadratic harvesting in a fractional order scavenger model. J. Phys.: Conf....
    • 16. George Maria Selvam, A., Britto-Jacob, S., Dhineshbabu, R.: Bifurcation and chaos control for prey predator model with step size in discrete...
    • 17. Selvam, A.G.M., Dhineshbabu, R., Janagaraj, R., Vignesh, D.: Synchronization and chaos in a novel discrete fractional prey–predator map....
    • 18. Padder, A., Almutairi, L., Qureshi, S., Soomro, A., Afroz, A., Hincal, E., Tassaddiq, A.: Dynamical analysis of generalized tumor model...
    • 19. Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel, theory and application to heat transfer...
    • 20. Caputo, M., Fabrizio, M.: On the notion of fractional derivative and applications to the hysteresis phenomena. Meccanica 52(13), 3043–3052...
    • 21. Goufo, E.F.D.: Application of the Caputo–Fabrizio fractional derivative without singular kernel to Korteweg–deVries–Burgers equation....
    • 22. Selvam, A.G.M., Janagaraj, R., Dhineshbabu, R.: Stability analysis of Caputo–Fabrizio fractional-order epidemic model of a novel coronavirus...
    • 23. Atangana, A.: Mathematical model of survival of fractional calculus, critics and their impact: how singular is our world? Atangana Adv....
    • 24. Ali Dokuyucu, M., Armagan, B., Eliuz, U., Ocak Akdemir, A., Emir Koksal, M.: Mathematical modeling of feelings in viewpoint of analysis...
    • 25. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
    • 26. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications. Gordon & Breach, Amsterdam...
    • 27. Lakshmikantham, V., Vatsala, A.: Basic theory of fractional differential equations. Nonlinear Anal. Theory Methods Appl. 69(8), 2677–2682...
    • 28. Lakshimikantham, V., Vatsala, A.: Theory of fractional differential inequalities and applications. Commun. Appl. Anal. 11, 395–402 (2007)
    • 29. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
    • 30. Goodrich, C., Peterson, A.C.: Discrete Fractional Calculus. Springer, Berlin (2015)
    • 31. Abdeljawad, T.: On Riemann and Caputo fractional differences. Comput. Math. Appl. 62(03), 1602– 1611 (2011)
    • 32. Alzabut, J., Tyagi, S., Abbas, S.: Discrete fractional-order BAM neural networks with leakage delay: existence and stability results....
    • 33. Alzabut, A.G.M.J., Dhineshbabu, R., Rehman, M., Rashid, S.: Discrete fractional order two point boundary value problems with some relevant...
    • 34. Alzabut, J., Abdeljawad, T., Baleanu, D.: Nonlinear delay fractional difference equations with applications on discrete fractional Lotka–Volterra...
    • 35. Alzabut, J., Selvam, A.G.M., Dhineshbabu, R., Kaabar, M.K.A.: The existence, uniqueness, and stability analysis of the discrete fractional...
    • 36. Alzabut, J., Selvam, A.G.M., Dhineshbabu, R., Tyagi, S., Ghaderi, M., Rezapour, S.: A Caputo discrete fractional-order thermostat model...
    • 37. Alzabut, J., Dhineshbabu, R., Selvam, A.G.M., Gómez-Aguilar, J.F., Khan, H.: Existence, uniqueness and synchronization of a fractional...
    • 38. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015)
    • 39. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model....
    • 40. Solis-Perez, J.E., Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., Reyes-Reyes, J.: Blood vessel detection based on fractional Hessian matrix...
    • 41. Alshammari, S., Alshammari,M., Abdo,M.S.: Nonlocal hybrid integro-differential equations involving Atangana–Baleanu fractional operators....
    • 42. Din, A., Li, Y., Yusuf, A., Isa Ali, A.: Caputo type fractional operator applied to Hepatitis B system, Fractals (2021). Fractals 30(01),...
    • 43. Liu, P., Din, A., Zarin, R.: Numerical dynamics and fractional modeling of hepatitis B virus model with non-singular and non-local kernels....
    • 44. Liu, P., Rahman, M.U., Din, A.: Fractal fractional based transmission dynamics of COVID-19 epidemic model. Comput. Methods Biomech. Biomed....
    • 45. Liu, P., Huang, X., Zarin, R., Cui, T., Din, A.: Modeling and numerical analysis of a fractional order model for dual variants of SARS-CoV-2....
    • 46. Saad, K.M., Srivastava, H.M.: Numerical solutions of the multi-space fractional-order coupled Korteweg–De Vries equation with several...
    • 47. Al Fahel, S., Baleanu, D., Al-Mdallal, Q.M., Saad, K.M.: Quadratic and cubic logistic models involving Caputo-Fabrizio operator. Eur....
    • 48. Jajarmi, A., Arshad, S., Baleuno, D.: A new fractional modeling and control strategy for the outbreak of dengue fever. Physica A 535,...
    • 49. Ucar, S., Ucar, E., Ozdemir, N., Hammouch, Z.: Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu...
    • 50. Din, A., Li, Y., Khan, F.M., Khan, Z.U., Liu, P.: On analysis of fractional order mathematical model of Hepatitis B using Atangana–Baleanu...
    • 51. Shatanawi, W., Abdo, M.S., Abdulwasaa, M.A.: A fractional dynamics of tuberculosis (TB) model in the frame of generalized Atangana–Baleanu...
    • 52. Abdo, M., Shah, K., Wahash, H.A., Panchal, S.K.: On a comprehensive model of the novel coronavirus (COVID-19) under Mittag–Leffler derivative....
    • 53. Thabet, S.T., Abdo, M.S., Shah, K., Abdeljawad, T.: Study of transmission dynamics of COVID-19 mathematical model under ABC fractional...
    • 54. Soh, B.C., Dillon, T.S., County, P.: Quantitative risk assessment of computer virus attacks on computer networks. Comput. Netw. ISDN Syst....
    • 55. Han, X., Tan, Q.: Dynamical behavior of computer virus on Internet. Appl. Math. Comput. 217, 2520– 2526 (2010)
    • 56. Zuo, Z., Zhu, Q., Zhou, M.: Infection, imitation and a hierarchy of computer viruses. Comput. Secur. 25, 469–473 (2006)
    • 57. Ren, J., Yang, X., Zhu, Q., Yang, L., Zhang, C.: A novel computer virus model and its dynamics Nonlinear Analysis. Real World Appl. 13,...
    • 58. Yang, L., Yang, X., Wen, L., Liu, J.: A novel computer virus propagation model and its dynamics. Int. J. Comput. Math. 89, 2307–2314 (2012)
    • 59. Muroya, Y., Enatsu, Y., Li, H.: Global stability of a delayed SIRS computer virus propagation model. Int. J. Comput. Math. 91, 347–367...
    • 60. Cohen, F.: Computer virus: theory and experiments. Comput. Secur. 6, 22–35 (1987)
    • 61. Pinto, C.M.A., Machado, J.A.T.: Fractional dynamics of computer virus propagation. Math. Probl. Eng. (2014). https://doi.org/10.1155/2014/476502
    • 62. Zarin, R., Khaliq, H., Khan, A., Ahmed, I., Humphries, U.W.: A numerical study based on Haar Wavelet collocation methods of fractional-order...
    • 63. Abdeljawad, T., Mert, R., Torres, D.F.: Variable order Mittag–Leffler fractional operators on isolated time scales and application to...
    • 64. Almatroud, O.A., Hioual, A., Ouannas, A., Sawalha, M.M., Alshammari, S., Alshammari, M.: On variable-order fractional discrete neural...
    • 65. Zhang, X.: Modeling the spread of computer viruses under the effects of infected external computers and removable storage media. Int....
    • 66. Farman, M., Akgul, A., Shanak, H., Asad, J., Ahmad, A.: Computer virus fractional order model with effects of internal and external storage...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno