Ir al contenido

Documat


Periodic Solutions of Generalized Lagrangian Systems with Small Perturbations

  • Joanna Janczewska [1]
    1. [1] Gdańsk University of Technology

      Gdańsk University of Technology

      Gdańsk, Polonia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01033-9
  • Enlaces
  • Resumen
    • In this paper we study the generalized Lagrangian system with a small perturbation.

      We assume the main term in the system to have a maximum, but do not suppose any condition for perturbation term. Then we prove the existence of a periodic solution via Ekeland’s principle. Moreover, we prove a convergence theorem for periodic solutions of perturbed systems.

  • Referencias bibliográficas
    • 1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, Pure and Applied Mathematics, vol. 140. Academic Press, New York (2009)
    • 2. Bonanno, G., O’Regan, D., Vetro, F.: Triple solutions for quasilinear one-dimensional p-Laplacian elliptic equations in the whole space....
    • 3. Chmara, M., Maksymiuk, J.: Anisotropic Orlicz–Sobolev spaces of vector valued functions and Lagrange equations. J. Math. Anal. Appl. 456,...
    • 4. Chmara, M.: Existence of two periodic solutions to general anisotropic Euler–Lagrange equations. Taiwanese J. Math. 25(2), 409–425 (2021)
    • 5. D’Agui, G., Mawhin, J., Sciammetta, A.: Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian....
    • 6. Hai, D.D., Wang, X.: Positive solutions for the one-dimensional p-Laplacian with nonlinear boundary conditions. Opuscula Math. 39(5), 675–689...
    • 7. Hiriart-Urruty, J.-B., Lemarechal, C.: Fundamentals of Convex Analysis. Grundlehren Text Editions. Springer, Berlin (2001)
    • 8. Izydorek, M., Janczewska, J., Waterstraat, N.: Homoclinics for singular strong force Lagrangian systems in RN . Calc. Var. Partial Differ....
    • 9. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, vol. 74. Springer, New York (1989)
    • 10. Mazzone, F.D., Acinas, S.: Periodic solutions of Euler–Lagrange equations in an anisotropic Orlicz– Sobolev space setting. Rev. Un. Mat....
    • 11. Trudinger, N.S.: An imbedding theorem for H0(G, ) spaces. Stud. Math. 50(1), 17–30 (1974)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno