Ir al contenido

Documat


General Solution to a Nonlocal Linear Differential Equation of First-Order

  • Autores: Wen-Xiu Ma
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01036-6
  • Enlaces
  • Resumen
    • Nonlocal differential equations have many applications in the physical sciences and engineering. One typical example of nonlocal dynamics is pantograph modeling, which has a long history in pantograph mechanics and pantograph transport. In 1821, Professor William Wallace invented the eidograph to improve upon the practical utility of the pantograph. Unsupervised machine learning in artificial intelligence deals with a nonlocal superposition. As a property of the universe that is independent of our description of nature, the notion of non-locality in quantum mechanics was introduced in the context of the EPR controversy on the phenomenon of entanglement between quantum systems.

  • Referencias bibliográficas
    • 1. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Mathematics in Science and Engineering, vol. 191. Academic...
    • 2. Jean-Pierre, R.: Time delay systems: an overview of some recent advances and open problems. Automatica 39, 1667–1694 (2003)
    • 3. Shapira, A., Tyomkyn, M.: Quasirandom graphs and the pantograph equation. Am. Math. Mon. 128, 630–639 (2021)
    • 4. Wallace, W.: Account of the invention of the pantograph, and a description of the eidograph. Trans. R. Soc. Edinb. 13, 418–439 (1836)
    • 5. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
    • 6. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780...
    • 7. Driver, R.D.: Ordinary and Delay Differential Equations. Applied Mathematical Sciences, vol. 20. Springer, New York (1977)
    • 8. Erneux, T.: Applied Delay Differential Equations. Surveys and Tutorials in the Applied Mathematical Sciences, vol. 3. Springer, New York...
    • 9. Sturis, J., Polonsky, K.S., Mosekilde, E., Van Cauter, E.: Computer-model for mechanisms underlying ultradian oscillations of insulin and...
    • 10. Makroglou, A., Li, J.X., Kuang, Y.: Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an...
    • 11. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977)
    • 12. Engelborghs, K., Lemaire, V., Bélair, J., Roose, D.: Numerical bifurcation analysis of delay differential equations arising from physiological...
    • 13. Kato, T., McLeod, J.B.: The functional-differential equation y (x) = ay(λx)+by(x). Bull. Am. Math. Soc. 77, 891–937 (1971)
    • 14. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)
    • 15. Ma, W.X.: Nonlocal PT-symmetric integrable equations and related Riemann-Hilbert problems. Partial Differ. Equ. Appl. Math. 4, 100190...
    • 16. Murphy, G.M.: Ordinary Differential Equations and Their Solutions. Dover Publications, Mineola (2011)
    • 17. Ma, W.X.: N-soliton solutions and the Hirota conditions in (1+1)-dimensions. Int. J. Nonlinear Sci. Numer. Simul. 23, 123–133 (2022)
    • 18. Ma, W.X.: A novel kind of reduced integrable matrix mKdV equations and their binary Darboux transformations. Mod. Phys. Lett. B 36, 2250094...
    • 19. Yao, S.W., Hashemi, M.S., Inc, M.: A Lie group treatment on a generalized evolution Fisher type equation with variable coefficients. Results...
    • 20. Ma, W.X.: Lump waves in a spatial symmetric nonlinear dispersive wave model in (2 + 1)-dimensions. Mathematics 11, 4664 (2023)
    • 21. Xu, Y.J., Hashemi, M.S.: Exact solutions for porous fins under a uniform magnetic field: a novel reduction method. Case Stud. Therm. Eng....
    • 22. Ma, W.X., Batwa, S., Manukure, S.: Dispersion-managed lump waves in a spatial symmetric KP model. East Asian J. Appl. Math. 13, 246–256...
    • 23. Akbulut, A., Mirzazadeh, M., Hashemi, M.S., Hosseini, K., Salahshour, S., Park, C.: Triki–Biswas model: its symmetry reduction, Nucci’s...
    • 24. Yao, S.W., Gulsen, S., Hashemi, M.S., Inc, M., Bicer, H.: Periodic Hunter–Saxton equation parametrized by the speed of the Galilean frame:...
    • 25. Ma, W.X.: Type (-λ, -λ∗) reduced nonlocal integrable mKdV equations and their soliton solutions. Appl. Math. Lett. 131, 108074 (2022)
    • 26. Ma, W.X.: Soliton solutions to constrained nonlocal integrable nonlinear Schrödinger hierarchies of type (-λ, λ). Int. J. Geom. Methods...
    • 27. Ma, W.X.: Integrable nonlocal nonlinear Schrödinger hierarchies of type (−λ∗, λ) and soliton solutions. Rep. Math. Phys. 92, 19–36 (2023)
    • 28. Ma, W.X.: Binary Darboux transformation of vector nonlocal reverse-time integrable NLS equations. Chaos Solitons Fractals 180, 114539...
    • 29. Ma, W.X.: Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions. J. Geom. Phys. 177, 104522 (2022)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno