Ir al contenido

Documat


Riemann–Hilbert Approach and Multiple Arbitrary-Order Pole Solutions for the Lakshmanan–Porsezian–Daniel Equation with Finite Density Initial Data

  • Autores: Wen-Yu Zhou, Shou-Fu Tian
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-00962-9
  • Enlaces
  • Resumen
    • In this work, the Riemann–Hilbert (RH) problem is employed to study the Lakshmanan–Porsezian–Daniel (LPD) equation with arbitrary-order pole points under finite density initial data condition. By performing spectral analysis on Lax pairs, a suitable matrix RH problem is established. Through the residue theorem, the explicit expression of simple pole solutions is obtained by Binet–Cauchy theorem. In addition, utilizing the Wronskian form of scattering data s11(μ) which degenerates to zero at high-order zero points and the Taylor expansion of oscillation index e2iθ , the expression of the high-order pole solutions is constructed. Moreover, the detailed analysis is conducted on the dynamic behaviors of special soliton solutions, and some interesting soliton phenomena are presented by taking the influence of various parameters into consideration.

  • Referencias bibliográficas
    • 1. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulaiton of waves in nonlinear media....
    • 2. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, New York (2003)
    • 3. Bailung, H., Nakamura, Y.: Observation of modulational instability in a multi-component plasma with negative ions. J. Plasma Phys. 50(2),...
    • 4. Zvezdin, A.K., Popkov, A.F.: Contribution to the nonlinear theory of magnetostat-icspin waves. Sov. Phys. JETP 2, 350 (1983)
    • 5. Adhikari, S.K.: Bright solitons in coupled defocusing NLS equation supported by coupling: application to Bose–Einstein condensation. Phys....
    • 6. Bao, W.Z., Tang, Q.L., Xu, Z.G.: Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrdinger equation....
    • 7. Dubard, P., Matveev, V.B.: Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation. Nat. Hazards Earth Syst. Sci....
    • 8. Fang, Y., Wu, G.Z., Wen, X.K., Wang, Y.Y., Dai, C.Q.: Predicting certain vector optical solitons via the conservation-law deep-learning...
    • 9. Geng, K.L., Zhu, B.W., Cao, Q.H., Dai, C.Q., Wang, Y.Y.: Nondegenerate soliton dynamics of nonlocal nonlinear Schrödinger equation. Nonlinear...
    • 10. Khater,M.M.A.: Novel computational simulation of the propagation of pulses in optical fibers regarding the dispersion effect. Int. J....
    • 11. Tian, S.F.: Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method....
    • 12. Tian, S.F., Zhang, T.T.: Long-time asymptotic behavior for the Gerdjikov–Ivanov type of derivative nonlinear Schrödinger equation with...
    • 13. Chen, S.Y., Yan, Z.Y.: The higher-order nonlinear Schrödinger equation with non-zero boundary conditions: robust inverse scattering transform,...
    • 14. Khater, M.M.A.: Hybrid accurate simulations for constructing some novel analytical and numerical solutions of three-order GNLS equation....
    • 15. Khater, M.M.A.: hybrid analytical and numerical analysis of ultra-short pulse phase shifts. Chaos, Solitons Fractals 169, 113232 (2023)
    • 16. Dudley, J.M., Taylor, J.R.: Supercontinuum Generation in Optical Fibers. Cambridge University Press, London (2010)
    • 17. Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133,...
    • 18. Porsezian, K.: Completely integrable nonlinear Schrödinger type equations on moving space curves. Phys. Rev. E 55, 3785–3788 (1997)
    • 19. Ye, Y.L., Hou, C., Cheng, D.D., Chen, S.H.: Rogue wave solutions of the vector Lakshmanan– Porsezian–Daniel equation. Phys. Lett. A 384,...
    • 20. Weng, W.F., Zhang, G.Q., Yan, Z.Y.: Strong and weak interactions of rational vector rogue waves and solitons to any n-component nonlinear...
    • 21. Yang, Y.Q., Suzuki, T., Cheng, X.P.: Darboux transformations and exact solutions for the integrable nonlocal Lakshmanan–Porsezian–Daniel...
    • 22. Xun, W.K., Tian, S.F.: Inverse scattering transform for the integrable nonlocal Lakshmanan–Porsezian– Daniel equation. arXiv: 2005.04011
    • 23. Liu, W., Qiu, D.Q., Wu, Z.W., He, J.S.: Dynamical behavior of solution in integrable nonlocal Lakshmanan–Porsezian–Daniel equation. Commun....
    • 24. Zhang, Y., Hao, H.Q., Guo, R.: Periodic solutions and Whitham modulation equations for the Lakshmanan–Porsezian–Daniel equation. Phys....
    • 25. Song, C.Q., Fang, R.R., Zhang, H.L., Zhao, H.Q.: The exact solutions to a new type space reverse nonlocal Lakshmanan–Porserzian–Daniel...
    • 26. Wang, M.M., Chen, Y.: General multi-soliton and higher-order soliton solutions for a novel nonlocal Lakshmanan–Porsezian–Daniel equation....
    • 27. Tariq, K.U., Wazwaz, A.-M., Ahmed, A.: On some optical soliton structures to the Lakshmanan– Porsezian–Daniel model with a set of nonlinearities....
    • 28. Hu, B.B., Lin, J., Zhang, L.: Dynamic behaviors of soliton solutions for a three-coupled Lakshmanan– Porsezian–Daniel model. Nonlinear...
    • 29. Peng, C., Li, Z., Zhao, H.W.: New exact solutions to the Lakshmanan–Porsezian–Daniel equation with Kerr law of nonlinearity. Math. Probl....
    • 30. Xie, W.K., Fan, F.C.: Soliton and breather solutions on the nonconstant background of the local and nonlocal Lakshmanan-+Porsezian–Daniel...
    • 31. Khater, M.M.A.: Multi-vector with nonlocal and non-singular kernel ultrashort optical solitons pulses waves in birefringent fibers. Chaos,...
    • 32. Khater, M.M.A.: Long waves with a small amplitude on the surface of the water behave dynamically in nonlinear lattices on a non-dimensional...
    • 33. Khater, M.M.A.: In solid physics equations, accurate and novel soliton wave structures for heating a single crystal of sodium fluoride....
    • 34. Khater, M.M.A.: Computational and numerical wave solutions of the Caudrey–Dodd–Gibbon equation. Heliyon 9(2) (2023)
    • 35. Khater, M.M.A.: Horizontal stratification of fluids and the behavior of long waves. Eur. Phys. J. Plus 138, 715 (2023)
    • 36. Khater, M.M.A.: Soliton propagation under diffusive and nonlinear effects in physical systems; (1+1)- dimensional MNW integrable equation....
    • 37. Han, T.Y., Khater, M.M.A.: Numerical and computational investigation of soliton propagation in physical systems via computational schemes:...
    • 38. Khater, M.M.A.: Advancements in computational techniques for precise solitary wave solutions in the (1+1)-dimensional Mikhailov–Novikov–Wang...
    • 39. Khater, M.M.A.: Numerous accurate and stable solitary wave solutions to the generalized modified Equal–Width equation. Int. J. Theor....
    • 40. Chen, Y., Lü, X.: Wronskian solutions and linear superposition of rational solutions to B-type Kadomtsev–Petviashvili equation. Phys....
    • 41. Gao, D., Lü, X., Peng, M.S.: Study on the (2+1)-dimensional extension of Hietarinta equation: soliton solutions and Bäcklund transformation....
    • 42. Chen, Y., Lü, X., Wang, X.L.: Bäcklund transformation, Wronskian solutions and interaction solutions to the (3+1)-dimensional generalized...
    • 43. Yin, Y.H., Lü, X.: Dynamic analysis on optical pulses via modified PINNs: soliton solutions, rogue waves and parameter discovery of the...
    • 44. Chen, S.J., Yin, Y.H., Lü, X.: Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations. Commun....
    • 45. Chen, S.J., Lü, X., Yin, Y.H.: Dynamic behaviors of the lump solutions and mixed solutions to a (2+1)-dimensional nonlinear model....
    • 46. Novikov, S., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Springer, Berlin (1984)
    • 47. Liu, N., Guo, B.L.: Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann–Hilbert approach. Nonlinear Dyn....
    • 48. Weng, W.F., Yan, Z.Y.: Inverse scattering and N-triple-pole soliton and breather solutions of the focusing nonlinear Schrödinger hierarchy...
    • 49. Wang, D.S., Zhang, D.J., Yang, J.K.: Integrable properties of the general coupled nonlinear Schrödinger equations. J. Math. Phys. 51,...
    • 50. Geng, X.G., Wu, J.P.: Riemann–Hilbert approach and N-soliton solutions for a generalized Sasa– Satsuma equation. Wave Motion 60, 62–72...
    • 51. Biondini, G., Kova˘ci˘c, G.: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions....
    • 52. Zhang, Z.C., Fan, E.G.: Inverse scattering transform and multiple high-order pole solutions for the Gerdjikov–Ivanov equation under the...
    • 53. Zhang, Y.S., Tao, X.X., Yao, T.T., He, J.S.: The regularity of the multiple higher-order poles solitons of the NLS equation. Stud. Appl....
    • 54. Zhang, Y.S., Qiu, D.Q., He, J.S.: Explicit Nth order solutions of Fokas–Lenells equation based on revised Riemann–Hilbert approach. J....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno